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ABSTRACT

In this thesis, we study a type of affine equivalence for the monomial rotation-symmetric

(MRS) Boolean functions and two new construction techniques for cryptographic Boolean

functions based on the affine equivalence of cryptographically strong base functions and

fast Boolean operations. Affine equivalence of cryptographic Boolean functions presents

a formidable challenge to researchers, due to its complexity and size of the search space.

We focus on an affine equivalence based on permutation of variables for MRS Boolean

functions and their relationship to circulant matrices over the binary field F2 and regular

graphs. We first establish a relationship between generalized inverses of circulant matri-

ces in F2 and their generating polynomials. We then apply the relationship to gain insight

into necessary conditions for the affine equivalence, based on permutations of variables for

MRS Boolean functions. We also propose a theoretical connection between regular graphs

and MRS Boolean functions to further our study in affine equivalence. Finally, we present

two constructions for Boolean functions with good cryptographic properties. The con-

structions take advantage of two affine-equivalent base functions with strong cryptographic

properties. We analyze the cryptographic properties of the constructions and demonstrate

an application with these base functions, called the hidden weighted-bit functions.
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1. INTRODUCTION

As we connect to the Internet with increasing frequency for various services, the

need for secure communication is higher than ever before. The ability to email or socialize

electronically with the world in a secure and stable manner is crucial for today’s global

citizen. We want our financial transactions over the Internet to get processed without error.

Cyber warfare between nations and industrial espionage among corporations are common-

place. A nation’s infrastructure networks need impregnable protection. We are living in

a fast moving, networked world, and any compromised or misintended information may

result in catastrophic consequences. It is therefore a paramount requirement of every elec-

tronic communications network system that it provide every authorized user.

Due to the Internet revolution, the application of cryptography is no longer limited

to corporations or government agencies. Any entity on the Internet has the need to protect

information in storage and data in transit to another part of the network. This protection,

attained via complex (mostly mathematical) schemes called cryptosystems, is an integral

part of any reliable network service. At the heart of every cryptosystem is a cipher. A

cipher is a set of algorithms used to encrypt and decrypt a message. An encrypted message

in any language is called ciphertext, and an unencrypted message is called plaintext. In

general, there are two types of cryptosystems; asymmetric and symmetric. The security of

a modern electronic cipher often depends on secret keys that are essential for encryption

and decryption processes. An asymmetric cipher uses different keys to encrypt and decrypt

a message, and the connection between the encryption and decryption keys is based upon

a known (and well studied) mathematical problem. RSA (the initials of the surnames of

its designers, Ron Rivest, Adi Shamir and Leonard Adleman) is a well known asymmetric

cipher. Compared to symmetric ciphers, asymmetric ciphers are generally slow. However,

asymmetric ciphers have added more functionality, such as message authentication and

digital signature and are more efficient in secret-key management, since they require fewer

secret keys. A symmetric cipher uses the same secret key to encrypt and decrypt a message.
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It is faster than asymmetric cipher, but requires more secret keys, since each pair of users

on the network needs to have a unique key. This makes secret-key management a difficult

task. Depending on how a symmetric cipher processes a message before encryption or de-

cryption, a symmetric cipher can be further classified into a block or stream cipher. A block

cipher breaks down a message into 64, 128, 192 or 256 binary bit blocks and encrypts the

message by blocks. The decryption of a block cipher is usually accomplished by revers-

ing the encryption process. Data Encryption Standard (DES) and Advanced Encryption

Standard (AES) are well known examples of block ciphers. On the other hand, a stream

cipher encrypts and decrypts a bit at a time. For example, GSM (Global System for Mobile

Communications), a wireless communications protocol, uses a stream cipher called A5/1.

The subject of this thesis, cryptographic Boolean functions, applies to both ciphers

— asymmetric and symmetric. Boolean functions can be key components to hashing al-

gorithms of asymmetric ciphers. Cryptographic Boolean functions can also be an element

for block cipher design and analysis. A good illustration of this is DES. Figure 1.1 shows

the DES encryption process. Despite all the seemingly complex procedures and diagrams,

the only nonlinear component in DES is the substitution process in the function f , which

uses a lookup table called substitution box or S-box to simply shuffle data. Surprisingly,

in DES, the S-boxes are the only component that integrates significant complexity to the

cipher. The S-box is the keystone of the security of DES. The same is true for AES. It is

possible to analyze an S-box with cryptographic Boolean functions and measure the secu-

rity of a block cipher against known attacks. We can also design another set of S-boxes for

DES, which optimizes certain cryptographic properties of Boolean functions [1].

The two important qualities of a cipher are security and speed. They often con-

flict with each other and affect the decision to choose the optimum cryptographic Boolean

functions for a cipher. The two broad topics of this thesis are the affine equivalence and

construction of Boolean functions with good cryptographic properties. A cryptographic

Boolean function of n variables takes an n dimensional Boolean vector and maps it to 0 or

1. Two Boolean functions are affine equivalent if we can obtain one from the other through

2



Figure 1.1: Data Encryption Standard (DES) Diagram From [2]

a set of affine transformations. By reflexivity, symmetry, and transitivity, the affine equiv-

alence is an equivalence relation. Therefore, it partitions any set of Boolean functions into

equivalence classes. A cryptanalyst can take advantage of the partitioning to devise an ef-

ficient algorithm to test the security of a cipher. He needs only to consider the equivalence

classes instead of all possible Boolean functions for the cipher, since affine transformations

preserve many of the cryptographic properties. On the other hand, cryptographic engineers

can integrate affine equivalent functions with good cryptographic properties for speed and

simplicity. For example, instead of using the same function, they may use affine equiva-

lence classes of the function to increase security. They can also avoid the equivalence class

of a cryptographically weak function, since they are inherently a security risk. Affine equiv-

alence is notoriously complex and often requires unrealistic computing resources. In this

thesis, we focus on an affine equivalence of monomial rotation-symmetric (MRS) Boolean

functions. A rotation-symmetric Boolean function (RSBF) is a Boolean function such that

a Boolean vector and its rotation equivalents render the same function value. For example,

if a Boolean function f(x) is a RSBF of three variables x = (x1, x2, x3), then the vector

3



(0, 0, 1) and its rotation equivalents (1, 0, 0) and (0, 1, 0) have the same function value. In

other words, f((0, 0, 1)) = f((0, 0, 1)) = f((0, 0, 1)). RSBFs are well known for their

speed [3], and some cryptographically strong Boolean functions are rotation symmetric.

An MRS Boolean function is a special type of RSBF, which we formally define in Chapter

4. Construction techniques of cryptographic Boolean functions may be less relevant to the

ciphers, such as DES and AES, since they use key-invariant S-boxes. However, ciphers

such as BLOWFISH and TWOFISH use key-dependent S-boxes. Efficient construction

techniques for S-boxes can be a crucial part of the ciphers with dynamic S-boxes. We

study two techniques using affine equivalence of cryptographically strong base functions

and two simple Boolean operations, concatenation and complementation. These construc-

tions provide the flexibility to choose a customized base function with good cryptographic

properties, as well as speed due to the simplicity of the Boolean operations. We also present

an application of our methods, using the hidden weighted-bit function, which is resistant to

a binary decision diagram (BDD)-related attack.

The rest of the dissertation is outlined as follows.

In Chapter 2, we formally define basic terminology and principles of cryptographic

Boolean functions. We illustrate applications of cryptographic Boolean functions and re-

view common cryptographic properties.

In Chapter 3, we delve into circulant matrices and introduce some results regarding

the general inverse of circulant matrices. We study a necessary condition for an affine

equivalence based on a permutation of input variables for MRS Boolean functions.

In Chapter 4, we study the relationship between MRS Boolean functions and regular

graphs. We establish a basic relationship and suggest other possibilities.

In Chapter 5, we study two different ways to construct Boolean functions with good

cryptographic properties via affine transformation, concatenations, and complementations

of cryptographically strong base functions.

4



In Chapter 6, we briefly introduce BDD and cryptanalysis based on its properties.

We present an application based on hidden weighted-bit function for our construction meth-

ods. We analyze cryptographic properties of these constructions.

In Chapter 7, we summarize and reflect on the main contribution of this thesis. We

also suggest some ideas for future research.

5
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2. CHARACTERISTICS OF CRYPTOGRAPHIC BOOLEAN
FUNCTIONS

2.1. BASIC DEFINITIONS AND FUNDAMENTAL PROPERTIES

First, we introduce a commutative binary operation, “exclusive-or” or XOR, de-

noted by “
⊕

” over the set {0, 1}. The Table 2.1 shows the truth table for the XOR opera-

tion. ⊕
0 1

0 0 1
1 1 0

Table 2.1: Binary Operation XOR

We also define a multiplication in {0, 1} in the usual way. This operation is equiva-

lent to logical “AND” operation. The Table 2.2 shows the truth table for the multiplication

operation.

· 0 1
0 0 0
1 0 1

Table 2.2: Binary Operation ·

We note that {0, 1} with ⊕ and · forms the smallest Galois field.

Definition 2.1.1. Let the set {0, 1} with the XOR operation and the usual multiplication

be the binary or Boolean field, denoted by F2. The set of n-tuples (x1, x2, . . . , xn), denoted

by Fn2 where xi ∈ F2 with 1 ≤ i ≤ n is an n dimensional vector space over F2.

We use the terms Boolean vectors and Boolean strings interchangeably. The Boolean

vector space has many common properties of other vector spaces, such as Rn and Cn.

We now proceed to define a Boolean function of n variables.

7



Definition 2.1.2. We define a Boolean function f of n variables as a mapping

f : Fn2 −→ F2.

A Boolean function f takes an n dimensional vector of 1’s and 0’s as input, and returns 1

or 0 as the function value. We denote the set of all Boolean functions of all variables as B,

and the set of all n variable Boolean functions as Bn. We use the terms “Boolean function

of n variables” and “Boolean function” interchangeably.

By applying the product rule of combinatorics, we observe that the domain of

f ∈ Bn has cardinality 2n. We usually order the domain in a lexicographical order. We

distinguish two types of lexicographical ordering, depending on how the elements of the

vector domain are ordered. One is the backward ordering, where we order the components

of the vector x such that x = (xn, xn−1, . . . , x2, x1). Therefore, the domain vectors are

lexicographically ordered such that (0, 0, . . . , 0, 0), (0, 0, . . . , 0, 1),...,(1, 1, . . . , 1, 1). The

other is the forward ordering, where we order the components of the vector x such that

x = (x1, x2, . . . , xn−1, xn). Therefore, the domain vectors are lexicographically ordered

such that (0, 0, . . . , 0, 0), (1, 0, . . . , 0, 0),...,(1, 1, . . . , 1, 1). When we say “lexicographical

order”, we mean the backward ordering, unless stated otherwise. For convenience, we

regard the vectors as row vectors and use forward ordering unless stated otherwise.

The most popular way to define a Boolean function of n variable is to list the

function values as they match the lexicographically ordered domain, which results in a

2n dimensional Boolean vector or string. The first column of Table 2.3 depicts a Boolean

function of 3 variables, f(x) with its truthtable 10011101.

Remark 2.1.3. For convenience, we note that f means the truth table representation of a

Boolean function f , and f(x) means the function value at the particular vector x.

Definition 2.1.4. Given a Boolean function f , the complement of f , denoted by f̄ , is f⊕1.

8



We observe that f̄ merely flips or changes the function values of f . That is, if

f(x) = 1, then f̄(x) = 0, and if f(x) = 0, then f̄(x) = 1. The complement of the function

on Table 2.3 is 01100010.

Lemma 2.1.5. f ⊕ f = 0, and f ⊕ f̄ = 1 where 0 = (0, 0, . . . , 0) and 1 = (1, 1, . . . , 1).

Remark 2.1.6. For convenience, we use string and vector notations interchangeably in this

thesis. For example, 10011101 = (1, 0, 0, 1, 1, 1, 0, 1).

By the product rule of combinatorics, there are 22n Boolean functions of n variables.

Another operation commonly used in Fn2 is concatenation.

Definition 2.1.7. Given two Boolean vectors, f = a1a2 . . . am and g = b1b2 . . . bn with

ai, bj ∈ F2 and m and n in N, the concatenation of f and g, denoted by f ‖ g, is an m+ n

vector obtained by simply combining the elements of f and g in order. That is,

f ‖ g = a1a2 . . . amb1b2 . . . bn.

Example 2.1.8. Table 2.3 shows the various expression of a Boolean function. It is inter-

esting to note that f = 1001 ‖ 1101, where 1001, 1101 ∈ B2 and f ∈ B3.

Another way to express the truth table is to take −1 to the power of the function

value. This set up gives us more options to aggregate some Boolean measures in R.

Definition 2.1.9. Given the truth table of a Boolean function f(x), we define the character

form or sign function [4, p. 6] of f(x), denoted by f̂(x)

f̂(x) = (−1)f(x).

It is clear that f̂(x) ∈ {−1, 1}, and also f̂(x) = 1− 2 · f(x).

The second column of Table 2.3 depicts a Boolean function of 3 variables f(x),

as −1, 1, 1,−1,−1,−1, 1,−1 in sign function. The next lemma describes the relationship

between the truth table and the sign function.
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Lemma 2.1.10. [4, p. 6] If f, g ∈ Bn and h = f ⊕ g, then ĥ = f̂ ĝ.

We call a multiplication term of Boolean variables, regardless of the power of each

variable, a monomial. For example, x1 · x0
2 · x3 = x1x3 is a monomial. Given x =

(xn, . . . , x1) with xi = {0, 1} and 1 ≤ i ≤ n, we observe that

(xi)
k = xi · xi · . . . · xi = xi,

for k ∈ N. We can write a polynomial-like expression for Boolean functions, using mono-

mials and ⊕. When we list the all the possible monomials in lexicographical order, we can

regard the set of all the Boolean functions of n variables as the set of the all possible XOR-

combinations of n variable monomials. We can also assign a unique 2n dimensional vector

over F2 to all possible monomials to write an XOR combination of n variable monomials

in the following way.

Definition 2.1.11. The algebraic normal form (ANF) of a Boolean function f(x) is an

XOR sum of monomials such that

f(x) =

j=2n⊕
a∈Fn2
j=1

cj · xa1
1 x

a2
2 · · ·xann ,

where a = (a1, a2, . . . an), c = (c1, c2, . . . , c2n), and ai, cj ∈ F2 for i = 1, 2, . . . , orn

and j = 1, 2, . . . , or 2n.

Example 2.1.12. The expression below illustrates the ANF of f(x) below. Typically, we

order the vector a lexicographically and obtain binary string f(x) = 0001000000001000

of length 2n long.
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f(x) = x1x2 ⊕ x3x4

= 0 · x0
1x

0
2x

0
3x

0
4 ⊕ 0 · x1

1x
0
2x

0
3x

0
4 ⊕ 0 · x0

1x
1
2x

0
3x

0
4 ⊕ 1 · x1

1x
1
2x

0
3x

0
4 ⊕ 0 · x0

1x
0
2x

1
3x

0
4 ⊕ · · ·

· · · ⊕ 1 · x0
1x

0
2x

1
3x

1
4 ⊕ . . .⊕ 0 · x1

1x
1
2x

1
3x

0
4 ⊕ 0 · x1

1x
1
2x

1
3x

1
4.

We also note that the ANF of a Boolean function is unique.

A Boolean function may be better understood with one expression type of f(x) than an-

other. We transform an ANF of a Boolean function f(x) to the truth table of f(x) by

simply evaluating the function value with the ANF. We can transform a truth table in Table

2.3 into an ANF expression by adding the monomials derived by the input values x such

that f(x) = 1. We demonstrate this process in the next example.

Example 2.1.13. The truth table of the Boolean function, f(x) on Table 2.3 is 10100111,

where f(000) = f(010) = f(101) = f(110) = f(111) = 1. We construct each term to

ensure that f(x) = 1 whenever x happens to be one of the vectors listed. For example,

since f(011) = 1, we want to have the term x1x2(x3⊕ 1) for x1 = 1, x2 = 1, x3 = 0. And

we apply this to each x with f(x) = 1 to obtain

f(x) = (x3 ⊕ 1)(x2 ⊕ 1)(x1 ⊕ 1)⊕ (x3 ⊕ 1)x2x1 ⊕ x3(x2 ⊕ 1)x1

⊕x3x2(x1 ⊕ 1)⊕ x3x2x1

= 1⊕ x1 ⊕ x2 ⊕ x1 · x3 ⊕ x1 · x2 · x3.
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n = 3 f(x) f̂(x) ANF (f(x))

000 1 -1 1
001 0 1 1
010 0 1 1
011 1 -1 0
100 1 -1 0
101 1 -1 1
110 0 1 0
111 1 -1 1

Table 2.3: Various Representation of a Boolean function f(x)

There is a more efficient way to construct the ANF from the truth table (and vice

versa), called transeunt triangle, and we refer to [5].

Definition 2.1.14. The ANF of a Boolean function gives us some important measures on

the function. In an ANF, the number of variables in the highest-order monomial with

nonzero coefficient is called the degree of the Boolean function. A Boolean function is

homogeneous if all its ANF terms have the same degree. A Boolean function is nonhomo-

geneous if it is not homogeneous.

Example 2.1.15. The function in Example 2.1.12 is a homogeneous Boolean function with

degree 2, whereas the function below is a nonhomogeneous Boolean function with degree

5.

f(x) = x1x2 ⊕ x1x2x3x4x5.

The degree of a Boolean function is one of the most important cryptographic proper-

ties in a cipher. We discuss the cryptographic implications of the degree in the next section.

A Boolean function of degree “at most, one” is an affine function. An affine function with

the constant term equal to zero is called a linear function. The set of all n variable affine

(respectively linear) functions is denoted by An (respectively Ln).

Let f ∈ Bn and E be any flat (that is, a coset of a vector subspace). If the restriction

f |E of f to E is constant (respectively affine), then E is called a constant (respectively

affine) flat for f .
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Let

1f = {x ∈ Fn2 |f(x) = 1}

be the support of a Boolean function f . We define the complement of the support

0f = {x ∈ Fn2 |f(x) = 0}.

We also note the usual dot-product operation of two vectors in the context of Boolean

vectors. Let x = (xn, . . . , x1) and w = (wn, . . . , w1) both belonging to Fn2 and x · w =

xnwn ⊕ . . .⊕ x1w1.

Definition 2.1.16. The number of 1’s in a binary string or vector x denoted by wt(x), is

called the Hamming weight.

We can apply the same idea to the truth table of a Boolean function f . The Ham-

ming weight of f is the Hamming weight of the truth table of f . The Hamming weight of

the Boolean function on Table 2.3 is 5. We also observe that the cardinality of 1f is the

Hamming weight of f .

Lemma 2.1.17. Given f ∈ Bn,

wt(f) =
∑
x∈Fn2

f(x) =

2n −
∑
x∈Fn2

f̂(x)

 .

Definition 2.1.18. Given two binary vectors (or strings) of same length, x = (x1, x2, . . . xn)

and y = (y1, y2, . . . yn). The Hamming distance, denoted by d(x,y), between the two vec-

tors is the number of indices where they have different binary values.

For example, if x = (0, 1, 0,0,0,0,0) and y = (1,1,1,1,1,1,0), d(x,y) = 5 since the

elements of x and y are different in the indices 1, 3, 4, 5, 6.

Lemma 2.1.19. Given two Boolean functions of n variables f = x1, x2, . . . xk and g =

y1, y2, . . . , yk in truth table, d(f, g) = wt(f ⊕ g).
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Lemma 2.1.20. For two Boolean functions f and g,

d(f, g) = 2n−1 − 1

2
f̂ ·̂g.

Next, we introduce an important measure of Boolean functions.

Definition 2.1.21. [4, p. 7] Given a Boolean function f , the Walsh transform of f on a

vector w is an integer value function defined by

W (f)(w) =
∑
x∈Fn2

f(x)(−1)w·x.

We can recover f by the inverse Walsh transform,

f(x) =
1

2n

∑
x∈Fn2

W (f)(w)(−1)w·x.

Another way to measure a Boolean function is the Walsh transform of f̂ on w, denoted by

Wf (w). We refer to it as the Walsh–Hadamard transform of f(x).

Wf (w) =
∑
x∈Fn2

f̂(x)(−1)w·x

=
∑
x∈Fn2

(−1)f(x)+w·x

The Walsh transform of f on w essentially measures the Hamming distance be-

tween f and the linear function defined by the vector w, which is

w · x = w1x1 ⊕ w2x2 ⊕ · · · ⊕ wnxn.

We use this result to define the nonlinearity of a Boolean function in the next section.
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Next, we discuss a concept analogous to a “directional derivative” [4, p. 38]. Given

a Boolean function f(x) and an arbitrary vector u, we can consider a measure on f(x) with

respect to a vector u.

Definition 2.1.22. Given a Boolean function f , the derivative of f with respect to a vector

u, denoted by Duf , is defined by

Duf = f(x)⊕ f(x⊕ u).

If f(x) = f(x ⊕ u), Duf = 0. If f(x) 6= f(x ⊕ u), Duf = 1. Therefore,∑
x∈Fn2

Duf(x) counts the number of input values in which function values change when the

change in direction of u is applied. We can apply the same idea to f̂ and obtain Duf̂ =

f̂(x)f̂(x ⊕ u), so that Duf̂ ∈ {−1, 1}. When we aggregate Duf̂ over x ∈ Fn2 , we have

the following definition for measuring how sensitive a Boolean function is in the domain.

Definition 2.1.23. [4, p. 8] The autocorrelation function of f ∈ Bn with respect to u ∈ Fn2 ,

denoted Cf (u) is defined by

Cf̂ (u) =
∑
x∈Fn2

f̂(x) · f̂(x⊕ u)

=
∑
x∈Fn2

(−1)f(x)⊕f(x⊕u).

We note that Cf̂ (0) = 2n.

The autocorrelation function measures the overall change of f as a result of the shift

or change caused by a vector u in the domain. We argue that if the overall change is half

of 2n, the statistical impact of the shift of u is zero. This notion gives us a cryptographic

property called the strict avalanche criterion (SAC), a concept invented by Webster and

Tavares and published in Crypto 85, which we elaborate in the next section. We can apply
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a similar idea to the autocorrelation function of two Boolean functions and measure how

they are related to each other with respect to a vector.

Definition 2.1.24. [4, p. 8] The correlation between two Boolean functions f and g is

defined by

C(f, g) = 1− d(f, g)

2n−1
.

The correlation function between f and g with respect to u ∈ Fn2 is an integer

valued function defined by

C(f̂, ĝ)(u) =
∑
x∈Fn2

f̂(x)ĝ(x⊕ u).

S-boxes of block ciphers may employ multiple cryptographic Boolean functions.

We want to reduce the correlation between functions as well as the autocorrelation function

values of each function used, to minimize the risk of a correlation attack.

The concept of a derivative gives us another interesting measure of a cryptographic

function, namely linear structure.

Definition 2.1.25. [6], [7] If the derivative of f ∈ Bn in respect to the u ∈ Fn2 , Duf is

constant, then u is a linear structure of f . If the linear structures of f form a subspace in

Fn2 , we call this subspace a linear space of f .

Depending on the constant derivative, we can further classify a linear structure u

into two types 0−linear structure, denoted byLS0(f) ifDuf = 0, and 1−linear structure,

denoted by LS1(f) if Duf = 1.

Theorem 2.1.26. [8] If LS1(f) 6= φ, the dimension of the entire linear space of f is equal

to

dim(LS0(f)) + 1.
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In [9], the concept of linear structure was used to show that the strict avalanche

criterion is local in the sense of a derivative, and may not be enough to protect a block

cipher from a statistical attack.

2.2. APPLICATION OF CRYPTOGRAPHIC BOOLEAN FUNCTIONS

In this section, we briefly comment on some applications of cryptographic Boolean

functions. Boolean functions are typically used for the construction of S-boxes for block

ciphers, nonlinear filters for a linear-feedback shift register (LFSR), nonlinear combiners

for multiple LFSRs in a stream cipher, or hashing functions in an asymmetric cipher.

2.2.1. Block Ciphers

A block cipher breaks down the text into blocks of some size, and enciphers and de-

ciphers it block by block. Boolean functions play a crucial role in analyzing and designing

block ciphers. The two prominent techniques to design a block cipher are Feistel ciphers

and substitution permutation networks (SPNs). Regardless of the scheme, it uses substitu-

tion boxes or S-boxes. For example, DES uses eight fixed S-boxes, which convert a six-bit

input string to a four-bit string. Table 2.4 shows the first S-box of DES, which consists

of four lookup tables numbered 0 through 15. Each row can be represented by a vecto-

rial Boolean function, F (x) : F4
2 → F4

2, which can be composed with four four-variable

Boolean functions. Each function takes a six-bit string and extracts the first and the last bit

to determine which row of the table to use. Then, the middle four bits process through the

vectorial function to output the substitution value. Table 2.5 shows the Boolean represen-

tation of the first S-box, and Table 2.6 lists the four cryptographic Boolean functions for

the first row of the first S-box.

Typically, S-boxes are the only nonlinear features in a block cipher. Without non-

linear S-boxes, almost all block ciphers could be solved with little effort. Therefore, when

designing an S-box for a block cipher, we must consider known relevant cryptographic

characteristics of S-boxes to optimize their security. In [1], a complete set of replacement

S-boxes for DES based on Boolean functions is presented.
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Row\Col 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Table 2.4: 1st S-box of DES in Decimal From [4, p. 170]

Row\Col 0000 0001 0010 0011 0100 0101 0110 0111
00 1110 0100 1101 0001 0010 1111 1011 1000
01 0000 1111 0111 0100 1110 0010 1101 0001
10 0100 0001 1110 1000 1101 0110 0010 1011
11 1111 1100 1000 0010 0100 1001 0001 0111

Row\Col 1000 1001 1010 1011 1100 1101 1110 1111
00 0011 1010 0110 1100 0101 1001 0000 0111
01 1010 0110 1100 1011 1001 0101 0011 1000
10 1111 1100 1001 0111 0011 1010 0101 0000
11 0101 1011 0011 1110 1010 0000 0110 1101

Table 2.5: 1st S-box of DES in Binary

Col Boolean Function (ANF and Truth Table)

1
1⊕ x1 ⊕ x3 ⊕ x4 ⊕ x2x3 ⊕ x3x4 ⊕ x1x2x3 ⊕ x2x3x4

1010011101010100

2
1⊕ x3 ⊕ x4 ⊕ x1x2 ⊕ x1x3 ⊕ x2x4 ⊕ x1x2x4

1110010000111001

3
1⊕ x1 ⊕ x2 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ x1x4 ⊕ x2x4 ⊕ x3x4 ⊕ x1x3x4 ⊕ x2x3x4

1000111011100001

4
x2 ⊕ x4 ⊕ x1x3 ⊕ x1x4 ⊕ x1x2x4

0011011010001101

Table 2.6: Boolean Function Representation of the First Row of the First S-box of DES

The S-boxes in DES are predetermined and typically implemented as a lookup table

for simplicity. However, block ciphers, such as BLOWFISH [10] and TWOFISH [11], do

not use fixed lookup tables (S-boxes), since they generate S-boxes from the key for each

session.
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2.2.2. Stream Ciphers

A stream cipher encrypts a plaintext bit by bit with secret-key stream bits. In gen-

eral, an XOR operation of a plaintext bit and secret-key stream bit results in a ciphertext bit.

A stream cipher integrates pseudo-random bit generators (PRBG) to produce a key stream.

In electronic circuits, a shift resister is a sequential logic circuit for storage of binary data.

It is set up in a linear fashion such that the stored data is shifted to a predetermined direction

when the circuit is on. A linear-feedback shift register (LFSR) is a shift register which takes

the output of a linear function of two or more bits from its previous state [4, p. 19]. We

assume an LFSR has n ≥ 1 variables. Table 2.7 shows the LFSR sequence generated by

the Boolean function of 4 variables, x1 ⊕ x4 with the initial vector x = x1x2x3x4 = 0101.

For example, from the initial vector, x1 = 0 and x4 = 1. Therefore, x1 ⊕ x4 = 0⊕ 1 = 1.

This feedback sets the next x1 = 1, and the previous x1, x2, and x3 shift to x2, x3, and x4,

respectively, which sets the next state, x = x1x2x3x4 = 1010. It repeats this process until

the LFSR obtains the initial vector again. The number of steps needed to reach the initial

vector is called the cycle of an LFSR. We note that the LFSR on Table 2.7 has a cycle of

24 − 1 = 15, which is the maximum cycle possible.

Figure 2.1: LFSR of x1 = x1 ⊕ x4

We can integrate a nonlinear filter or an n variable Boolean function with good

cryptographic properties to generate secure key streams.

One way to construct a PRBG is to combine LFSRs and cryptographic Boolean

functions. We consider two applications of cryptographic Boolean functions in stream

ciphers: a nonlinear filter and a nonlinear combiner. In the nonlinear filter setup, an LFSR

and a cryptographic Boolean function as a nonlinear filter can generate a secret-key stream.
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x1 x2 x3 x4 Output
0 1 0 1 1
1 0 1 0 1
1 1 0 1 0
0 1 1 0 0
0 0 1 1 1
1 0 0 1 0
0 1 0 0 0
0 0 1 0 0

x1 x2 x3 x4 Output
0 0 0 1 1
1 0 0 0 1
1 1 0 0 1
1 1 1 0 1
1 1 1 1 0
0 1 1 1 1
1 0 1 1 0
0 1 0 1 1

Table 2.7: Bit Stream Generated by LFSR of x1 = x1 ⊕ x4 with Initial Vector 0101

As the LFSR shifts through the states, the nonlinear filter processes n variables from each

state and outputs a key bit. Table 2.2 illustrates this process.

Figure 2.2: Nonlinear Filter

Turing is a stream cipher developed for CDMA (Code Division Multiple Access),

which is a wireless communication protocol developed by Qualcomm [12]. Turing gener-

ates 160 bits of output in each round by applying a nonlinear filter to the internal state of

an LFSR [13]. In the nonlinear combiner setup, an n variable Boolean function with good
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cryptographic properties takes n output bits, each from n distinct LFSRs, and outputs a

secret stream bit. Figure 2.3 illustrates a nonlinear combiner of n LFSRs. An example for

this setup is A5/2, which is the stream cipher used to encrypt voice transmissions in the

GSM cellular telephone network. A5/2 is based on four LFSRs and a nonlinear combiner.

Figure 2.3: Nonlinear Combiner

2.2.3. Hash Functions

Some secure communications protocols and asymmetric ciphers use hash functions

to ensure authenticity, integrity, and nonrepudiation of a message. A hashing function can

be integrated into a secure communication system to detect an unauthorized modification or

tampering. Secure email systems can employ a digital-signature scheme that uses hashing

functions to ensure the reliability of a message. Since a hashing function does not require a

decryption or recovery of the original message, in a software-based implementation we can

use a fast Boolean function with good cryptographic properties. Some candidates for this

purpose are symmetric and rotation-symmetric Boolean functions, since we can evaluate

them faster due to their simple structures. A Boolean function is symmetric if vectors with
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x 0000 0001 0010 0011 0100 0101 0110 0111
f(x): Symmetric 0 1 1 0 1 0 0 1
g(x): RSBF 1 1 1 0 1 1 0 1

x 1000 1001 1010 1011 1100 1101 1110 1111
f(x): Symmetric 1 0 0 1 0 1 1 0
g(x): RSBF 1 0 1 1 0 1 1 1

Table 2.8: Comparison of a Symmetric and Rotation-Symmetric Boolean Function

the same Hamming weight have the same function value. A Boolean function is rotation

symmetric if the function renders the same function value for an input vector and its rotation

equivalents.

Table 2.8 illustrates the symmetric and rotation-symmetric functions. The function

f(x) is symmetric, since has the same function values for the vectors with each Hamming

weight. The function g(x) is rotation symmetric, since each vector and its rotation equiva-

lents have the same function values. We note that if a function is symmetric, then it is also

rotation symmetric. However, the converse of the previous statement is not true, since a

rotation equivalent of a vector with a Hamming weight k and a non-rotation equivalent of

the vector with the same Hamming weight may have different function values in a rotation-

symmetric function. We give a proper definition of rotation-symmetric Boolean functions

and their properties in the next chapter.

2.3. CRYPTOGRAPHIC CHARACTERISTICS OF BOOLEAN FUNCTIONS

In [14], Shannon establishes two important principles in designing a cipher: confu-

sion and diffusion. He introduces the principle of confusion to ensure that the relationship

between the ciphertext and the encryption or decryption key is complex and complicated

as possible, and the principle of diffusion to ensure the plaintexts are dissipated into the

space of ciphertext. Most cryptographic characteristics discussed here are well studied and

address Shannon’s confusion and diffusion principles in a cipher. We review some well-

studied characteristics and outline significance of the corresponding property.
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2.3.1. Balancedness

A Boolean function f ∈ Bn is balanced if the truth table of f has 2n−1 zeros and

2n−1 ones. We observe that if f is balanced wt(f) = 2n−1. A balanced Boolean function

counters statistics-based attacks and correlation attacks. We can measure how close the

Boolean function is to a balanced one by the following measure.

Definition 2.3.1. [15] The imbalance of Boolean function If is defined as follows

If =
∑
x∈Fn2

f̂(x).

The correlation between f(x) and the constant function f(x) = 0 or 1 is −1 ≤ If
2n
≤ 1.

A balanced function f has zero correlation to a constant function, since If = 0. The

balancedness can be checked by the Walsh–Hadamard transform as shown in the lemma

below.

Lemma 2.3.2. A Boolean function f is balanced if and only if Wf (0) = 0.

2.3.2. Algebraic Degree

Consider a Boolean function in ANF, f(x) =
j=2n⊕
a∈Fn2
j=1

cj · xa1
1 x

a2
2 · · · xann as in Defi-

nition 2.1.11. The algebraic degree of f(x) is the largest number of variables in a term

cj · xa1
1 x

a2
2 · · ·xann with ai = cj = 1 with i = 1, 2, . . . n. We denote the algebraic degree of

f ∈ Bn as deg(f). Using interpolation cryptanalysis [16] and high-order differential crypt-

analysis [17], a cryptanalyst can carry out an effective attack on some ciphers employing

low-degree Boolean functions.

2.3.3. Nonlinearity

The use of affine Boolean functions in a cipher is undesirable, due to the simple

algebraic structure of affine functions. We want to use Boolean functions that are far away

from an affine function, which gives us the following measure.
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Definition 2.3.3. [4, p. 7] LetAn be a set of all affine Boolean functions of n variables. The

nonlinearity of a Boolean function, denoted by nl(f) is the minimum Hamming distance

between f and any function in An.

Theorem 2.3.4. [4, p. 13] For f ∈ Bn,

nl(f) = 2n−1 − 1

2
max
u∈Fn2
|Wf (u)|,

The following upper limit for the nonlinearity is well known (see Seberry and Zhang

[18]).

Theorem 2.3.5. [18] For f ∈ Bn,

nl(f) ≤ 2n−1 − 2n/2−1.

We observe that 2n/2−1 in Theorem 2.3.5 is not an integer if n is odd. If n is even,

we have a special family of functions, called bent functions, that achieve the nonlinearity

bound.

Definition 2.3.6. Let f ∈ Bn and n be even. Then f is a bent function if

nl(f) ≤ 2n−1 − 2n/2−1.

If n is odd with n = 2k + 1, k = 0, 1, 2, . . ., the bent concatenation bound is defined as

22k − 2k.

It is known that the algebraic degree of a bent function is bounded above by n
2

[4,

p. 80]. The r-order nonlinearity, denoted by nlr(f), is its distance from the set of all n

variable functions of algebraic degrees at most r. A Boolean function needs to have higher

r-order nonlinearity to resist a fast algebraic attack [19]. We can also devise a statistical

measure using nonlinearity.
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Definition 2.3.7. Given a Boolean function f , the bias of nonlinearity for f , denoted by

ε(f) is

ε(f) =
1

2
− nl(f)

2n
.

The fast correlation attack on f has an on-line complexity proportional to
(

1
ε

)2 [20].

2.3.4. Avalanche and Propagation Criteria
2.3.4.1. Strict Avalanche Criterion (SAC)

The strict avalanche criterion is one of the cryptographic characteristics that

cover the diffusion principle. The main point is that when we change an element of the

input vector, we want the effect of the change equally distributed throughout the truth

table. This idea was first introduced by Webster and Tavares in [21]. Given f(x) ∈ Bn
and an input x = (x1x2, . . . , xn), if we select an xk in x with 1 ≤ k ≤ n, then we

can envision the domain Fn2 as two equivalence classes, A = {(x1, . . . , xn)|xk = 0} and

B = {(x1, . . . , xn)|xk = 1}. We note that there are 2n−1 unique pairs (x,y) with x ∈ A

and y ∈ B such that xi = yi with i = 1, 2, . . . n except for when i = k. Without loss of

generality, assume xk = 0. As xk changes from 0 to 1, some pairs have the same function

values (are not affected by the change), and the others have their function values changed

from 0 to 1 or 1 to 0. The Boolean function f satisfies the SAC, if exactly half of the pairs

change their function values for all k.

Example 2.3.8. [4, p. 25] In Table 2.9, if we fix x2 = 0, we have f(000) = 1, f(001) = 1,

f(100) = 0, and f(101) = 1. When x2 becomes 1, we have f(010) = 1, f(011) = 0,

f(110) = 1, and f(111) = 1. We observe that as x2 changes from 0 to 1, f(0x20) and

f(1x21) do not change, but f(0x21) and f(1x20) change. We can check x1 and x2 in a

similar manner and observe the same result. Therefore, f satisfies the SAC.

The next lemma is a well-known equivalent statement to the definition of

the SAC.
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x 000 001 010 011 100 101 110 111
f(x) 1 1 1 0 0 1 1 1

Table 2.9: A 3-variable Function Which Satisfies the SAC

Lemma 2.3.9. [21] A Boolean function f satisfies the SAC if and only if Cf̂ (w) = 0 for all

wt(w) = 1 where w = (w1, w2, . . . , wn) and 1 ≤ i ≤ n.

Using Lemma 2.3.9, we can develop a computational tool to verify if a

Boolean function satisfies the SAC.

2.3.4.2. Propagation Criteria

The concept of the propagation criterion generalizes the SAC. Preneel et al.

[22] first introduced this idea.

Definition 2.3.10. [4, p. 38] A Boolean function f satisfies the propagation criterion of

degree k or PC(k) if changing the value of any i elements of the input vector with 1 ≤ i ≤

k ≤ n changes exactly the half of the function values of the affected vectors.

We can extend Lemma 2.3.9 to cover the PC(k) functions.

Lemma 2.3.11. A Boolean function f satisfies PC(k) if and only if Cf̂ (w) = 0 for all

wt(w) = m where w = (w1, w2, . . . , wn) and 1 ≤ m ≤ k.

2.3.5. Global Avalanche Criterion (GAC)

In [9], Zhang and Zheng first introduced the concept of GAC. They noted that the

functions with SAC provide some level of security, but the SAC is only “local” and does

not cover all possible linear structures in a Boolean function. PC(k) on the other hand

covers all possibilities. It seems that a large k implies better security. However, when k

is even and k = n, the function is a bent function. Despite the highest nonlinearity, a

bent function is not balanced. To address these issues, they introduced GAC, in which we

measure the avalanche effects throughout all possible n-variable Boolean vectors using the

two measures below.
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Definition 2.3.12. [9] Given a Boolean function f(x), the sum-of-squares indicator for the

avalanche characteristic of f(x) is

σf =
∑
α∈Fn2

C2
f̂
(α),

and the absolute indicator for the characteristic is

4f = max
α∈Fn2

∣∣∣Cf̂ (α)
∣∣∣ ,

where Cf̂ (α) =
∑

x∈Fn2
(−1)f(x)⊕f(x⊕α).

Some cryptographic properties conflict with one another. In this case we see three

conflicting properties, namely balance, nonlinearity, and propagation criteria. The GAC

provides us with two general measures that we can minimize.

2.3.6. Correlation Immunity and Resilience

Given some Boolean function values f(x), an attacker may guess the relationship

between the elements of input, xi of x = (x1, x2, . . . xn) and f(x). Therefore, we want to

engineer a principle into our function to deal with this kind of situation. Siegenthaler [23]

first conceived the notion of correlation immunity to address this issue.

Definition 2.3.13. [4, p. 49] Let xc1, xc2, . . . xci of x = (x1, x2, . . . xn) be any i variables

with i ≤ k of input x. A Boolean function f(x) ∈ Bn has correlation immunity of order

k, denoted by CI(k), if given f(x), the probability of xc1, xc2, . . . xci being certain value

is 2−i. In other words, f(x) is statistically independent with respect to any subset of k

variables. In particular, f(x) is called a resilient function of order k if it is CI(k) and

balanced.

Example 2.3.14. The Boolean function in the Table 2.10 has CI(1). For example, if

f(x) = 0 and xi = x1, we can compute the conditional probability with xi = 0,
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Pr(x1 = 0|f(x) = 0) =
Pr(x1 = 0 ∩ f(x) = 0)

Pr(f(x) = 0)

=
3/8

6/8

=
1

2

the conditional probability with xi = 1,

Pr(x1 = 1|f(x) = 0) =
Pr(x1 = 1 ∩ f(x) = 0)

Pr(f(x) = 0)

=
3/8

6/8

=
1

2
.

The same procedures can check for xi = x2, x3 to conclude that the function has

CI(1). However, we observe that
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Pr(x1 = 1, x2 = 1|f(x) = 0) =
Pr(x1 = 1 ∩ x2 = 1 ∩ f(x) = 0)

Pr(f(x) = 0)

=
1/8

6/8

=
1

6

6= 1

4
.

Therefore, f(x) does not have CI(2).

x 000 001 010 011 100 101 110 111
f(x) 0 0 0 1 1 0 0 0

Table 2.10: A three-variable function with CI(1)

There is an efficient way to verify CI using the Walsh-Hadamard transform.

Lemma 2.3.15. [4, p. 50] Let f ∈ Bn. CI(f) = k with 1 ≤ k ≤ n if and only if

Wf (w) =
∑
x∈Fn2

(−1)f(x)⊕w·x = 0

for all w where 1 ≤ wt(w) ≤ k.

2.3.7. Algebraic Immunity

For decades, linearization and some of its variations have been used to attack a

stream cipher employing a Boolean function. They typically use Gaussian elimination as a

core algorithm. By choosing a Boolean function with a high degree, we can substantially

increase the computing resources needed to carry out an attack, which renders linearization

useless as a practical technique to solve a stream cipher. However, a new class of attack
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was introduced in 2003. It was shown that if a stream cipher employs a Boolean function

f or f ⊕ 1 with a low-degree function such that fg = 0 or (f ⊕ 1)g = 0, the cipher can be

methodically solved by the algebraic attack discussed in [24] and [25].

Definition 2.3.16. For any f ∈ Bn, a nonzero function g ∈ Bn is called an annihilator of

f if fg = 0, and the algebraic immunity of f , denoted by AI(f), is the minimum value of

d such that f or f ⊕ 1 admits an annihilator of degree d [26].

The following two cases are algebraic attack possibilities [24].

Case 1: Assume that there exists a function g of low algebraic degree such that

fg = h, where h is a nontrivial function with low algebraic degree.

Case 2: Assume that there exists a function g of low algebraic degree such that

fg = 0. In 2003, Courtois and Meier showed that the algebraic immunity of an n variable

Boolean function is bounded above by dn
2
e.

Remark 2.3.17. [27] While algebraic immunity is an important cryptographic property, it

is not enough to resist fast algebraic attacks, a more efficient form of algebraic attacks. If

we can find g of low degree and h of algebraic degree not much larger than n/2, such that

fg = h, then f is susceptible to fast algebraic attacks [24], [28].

2.3.8. Normality

The normality was first discussed by Dobbertin while examining bent functions

in [29]. Since the number of variables in a bent function is even, the initial focus was

on the even variable functions, which are invariant with respect to the vectors in a flat.

Dobbertin called a Boolean function of even variables “normal” if it is invariant on a flat of

the dimension
n

2
. Later this concept was generalized for odd variable functions invariant in

a flat of dimension dn
2
e. Dobbertin conjectured that all bent functions are normal. However,

some non-normal bent functions were discovered by Canteaut el al. [30], and the notion

of normality became an independent measure for general Boolean functions. Later, it was

shown that there are very few normal functions, and the definition below was established

by Carlet [31].
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Definition 2.3.18. A Boolean function f ∈ Bn is called k-normal if there exist a k dimen-

sional flatG such that f is constant. We denote such condition as f |G= 0 or 1. If k = dn
2
e,

f is simply called a normal function.

General information on the normality can be found in [32].

2.4. TRADEOFFS BETWEEN CRYPTOGRAPHIC PROPERTIES

Unfortunately, composing or finding good cryptographic Boolean functions has a

few obstacles, since there are some cryptographic properties that we cannot optimize si-

multaneously. We present common dilemmas among cryptographic properties with the

relevant theorems.

2.4.1. Correlation Immunity and Degree

In 1984, Siegenthaler [23] showed that there is a necessary tradeoff between achiev-

ing high-degree and high-correlation immunity.

Theorem 2.4.1. [23, Theorem 1] If a Boolean function f is CI(k), then the degree of f is

at most n − k. If f is CI(k) with k < n − 1 and balanced, then the degree of f is at most

n− k − 1.

2.4.2. Correlation Immunity and Nonlinearity

Theorem 2.4.2 illustrates the tradeoff between correlation immunity and nonlinear-

ity of Boolean functions.

Theorem 2.4.2. [33] If a Boolean function f is CI(k) with k ≤ n− 2,

nl(f) ≤ 2n−1 − 2k+1.

We can combine Theorems 2.4.1 and 2.4.2 and obtain the following theorems.

Theorem 2.4.3. [4, p. 71] If f is balanced and CI(k) with k ≤ n − 2, then equality is

possible in Theorem 2.4.2 only if f has its maximum possible degree n− k − 1.
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If deg(f) < n− k − 1, then

nl(f) ≤ 2n−1 − 2k+2.

The following theorem by Carlet improves Theorem 2.4.3 to incorporate the degree

of the function in the upperbound [4, p. 72].

Theorem 2.4.4. [34] If a balanced Boolean function f with degree d is CI(k) with k ≤

n− 2, then

nl(f) ≤ 2n−1 − 2k+1+b(n−k−2)/dc.

2.4.3. Algebraic Immunity and Nonlinearity

The following theorem describes the limit (commonly called “Lobanov’s bound”).

The theorem implies that we can increase the algebraic immunity of a function along with

the nonlinearity, but at the expense of decreasing the correlation immunity due to Theorem

2.4.2.

Theorem 2.4.5. [35] If f ∈ Bn has algebraic immunity k,

nl(f) ≥ 2
k−2∑
i=0

(
n− 1

i

)
.
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3. AFFINE EQUIVALENCE OF MONOMIAL
ROTATION-SYMMETRIC BOOLEAN FUNCTIONS

3.1. INTRODUCTION

In this chapter, we study the affine equivalence of monomial rotation-symmetric

(MRS) Boolean functions. A general affine equivalence problem for Boolean functions is

a complete partitioning of the n-variable Boolean function space based on an affine equiv-

alence relation. A greedy algorithm for affine equivalence verification requires checking

all elements of GLn(F2), and has computational complexity O(2n
2
). This implies that

if n ≥ 7, the problem becomes quite a challenge for current computing platforms. The

first notable effort to solve an affine equivalence problem is found in [36], published in

1964. Berlekamp and Welch [37] in 1972 found all equivalence classes for all five vari-

able Boolean functions. In 1991, Maiorana [38] computed 150, 357 equivalence classes

of six variable Boolean functions. Due to its complexity and size, affine equivalence still

remains a tough problem to deal with, especially for a general solution, which addresses

any n ∈ N. Besides the pure mathematical perspective, an affine equivalence can be ap-

plied to cryptanalysis and cryptographic engineering. For example, differential and linear

cryptanalyses are two major techniques to solve the S-boxes of block ciphers. If an S-

box is vulnerable to differential or linear cryptanalysis, so are the S-boxes realizing affine

equivalence functions. This fact simplifies the tasks of cryptanalysts, since they just need

to choose and analyze an (easy) representative of an equivalence class. On the other hand,

the cryptographic engineers may take advantage of affine equivalent S-boxes of a S-box

that is strongly resistant to these attacks, since affine transformations have small delays and

preserve much of the cryptographic properties of the original function.

A rotation-symmetric Boolean function (RSBF) is invariant under the rotation or

circular shift of a input. For example, if f ∈ B3 is rotation symmetric, then f(001) =

f(010) = f(100), f(011) = f(101) = f(110), and so on. Since an RSBF uses re-
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n Number of Classes
1 1
2 2
3 3
4 8
5 48
6 150,357

Table 3.1: Affine Equivalence Classes in Bn

peated function values, it is relatively fast. However, despite being seemingly simple func-

tions to evaluate, the class of RSBFs contain many functions richly endowed with good

cryptographic properties. For example, the famous Patterson–Wiedemann function in B15

[39] that achieves nonlinearity 16276, which is strictly greater than the bent concatenation

bound, 215−1 − 2(15−1)/2 = 16256 is rotation symmetric [4, p. 112]. Moreover, Kavut et

al. [40], [41], [42] proved that there exist rotation-symmetric functions of nine variables

with the nonlinearity 241 and 242, which is also strictly greater than the bent concatenation

bound 29−1 − 2(9−1)/2 = 240 [4, p. 112]. Due to their speed and the prospect of being

good cryptographic Boolean functions, RSBFs have received a lot of attention from cryp-

tographic researchers. In [43], Filiol and Fontaine initially studied cryptographic properties

of RSBFs (they used the term, “idempotent” function instead of RSBF), mainly focusing

on nonlinearity [4, p. 112]. Later, the nonlinearity and correlation immunity of RSBFs

were studied thoroughly in [44], [45], [46], [47], and [48]. The RSBF’s speed and poten-

tial to have good cryptographic properties make them suitable for such an application as

hashing algorithms. Pieprzyk and Qu studied the use of RSBFs in a hashing algorithm in

[3]. We note the papers [49] and [50] dealing with algebraic immunity of RSBF. The class

of RSBFs are interesting to apply the notion of affine equivalence into, as the function

space is much smaller (≈ 2
2n

n ) than the total space of Boolean functions (22n), and the

set contains functions with very good cryptographic properties. It has been experimentally

demonstrated that there are RSBFs that are simultaneously good in terms of balancedness,

nonlinearity, correlation immunity, algebraic degree, and algebraic immunity.
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There has been consistent effort to investigate the affine equivalence of RSBFs.

Some recent efforts include [51], [52], [53], [54], and [55]. In this chapter, we focus on a

type of affine equivalence named “S-equivalence” applied to monomial rotation-symmetric

(MRS) functions. The material in this chapter is based on Chung and Stanica [56].

3.2. AFFINE EQUIVALENCE OF BOOLEAN FUNCTIONS

Definition 3.2.1. We say that f, g ∈ Bn are affine equivalent if there exists an n × n

invertible matrix A over the finite field F2, the vectors b, c ∈ Fn2 and d ∈ F2 such that

g(x) = f(xA⊕ b)⊕ c · x⊕ d.

Some researchers prefer a simplified version of equivalence where c = 0 and d = 0.

Definition 3.2.2. [55] We say that two Boolean functions f(x) and g(x) in Bn are equiva-

lent under an affine transformation if g(x) = f(xA⊕b), where A is an n×n nonsingular

matrix over the finite field F2 and b is an n-dimensional vector over F2. We say f(xA⊕b)

is a nonsingular affine transformation of f(x).

In this thesis, we focus on a type of affine equivalence where b = 0, c = 0, d = 0,

and A is permutation matrix. We will define this notion called “S-equivalence” in a later

section.

Example 3.2.3. Consider the following five variable Boolean functions,
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f = x1x2 ⊕ x3x4x5

f1 = x1x2 ⊕ x3x4x5 ⊕ x1 ⊕ x3

f2 = x1x2 ⊕ x3x4x5 ⊕ x2 ⊕ x3 ⊕ x5 ⊕ 1

f3 = x3x4 ⊕ x1x2x5 ⊕ x1 ⊕ x3 ⊕ 1

f4 = (x4 ⊕ 1)x3 ⊕ x1x2(x5 ⊕ 1)⊕ x1 ⊕ x3 ⊕ 1

= x3x4 ⊕ x1x2x5 ⊕ x1x2 ⊕ x1 ⊕ 1

We see that f1 = f ⊕ c · x, where c = (1, 0, 1, 0, 0). f2 = f ⊕ c · x ⊕ d, where

c = (0, 1, 1, 0, 1) and d = 1. f3 = f(xA)⊕ c · x⊕ d, where

A =



0 0 0 0 1

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 1 0


,

c = (1, 0, 1, 0, 0), and d = 1. f4 = f(xA⊕ b)⊕ c · x⊕ d, where A, c, and d are same as

f3 with b = (1, 0, 0, 1, 0).

Essentially, a permutation transformation rearranges the order of input, which pre-

serves the Hamming weight of the truth table. Clearly, if f and g are equivalent under
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affine transformation, then wt(f) = wt(g) and nl(f) = nl(g). However, the sufficiency

only holds for quadratic Boolean functions.

Theorem 3.2.4. [56] Two quadratic functions f and g in Bn are equivalent under affine

transformation if and only if wt(f) = wt(g) and nl(f) = nl(g).

Unfortunately, the result cannot be extended to higher degrees. In S-equivalence,

we obtain a similar result for degrees ≥ 2. If two functions f and g in Bn are S-equivalent,

then wt(f) = wt(g) and nl(f) = nl(g). The converse of the statement does not hold. We

can still use the result to show non-equivalence in many cases.

3.3. ROTATION-SYMMETRIC BOOLEAN FUNCTIONS

Definition 3.3.1. Let xi ∈ F2 for 1 ≤ i ≤ n. For 1 ≤ k ≤ n, we define the permutation ρkn

on (x1, x2, . . . , xn) ∈ Fn2 such that

ρkn((x1, x2, . . . , xn−1, xn)) = (ρkn(x1), ρkn(x2), . . . , ρkn(xn−1), ρkn(xn)),

where

ρkn(xi) = xi+k if i+ k ≤ n

and

ρkn(xi) = xi+k−n if i+ k > n.

Hence, ρkn acts as k-cyclic rotation on an n-bit vector.

Based on the permutation in Definition 3.3.1, we define the RSBF.
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Definition 3.3.2. A Boolean function f is called rotation symmetric if, for each vector

(x1, . . . , xn) in Fn2 ,

f(ρkn(x1, . . . , xn)) = f(x1, . . . , xn), for 1 ≤ k ≤ n.

Definition 3.3.2 implies that the rotation-symmetric Boolean functions (RSBFs)

are invariant under a cyclic rotation of input vectors. Clearly, the input vectors in a rotation

class are in a equivalence relation. Therefore, the inputs of a rotation-symmetric Boolean

function can be divided into partitions so that each partition consists of all cyclic shifts of

one input. A partition is generated by say Gn(x1, x2, . . . , xn) = {ρkn(x1, x2, . . . , xn)|1 ≤

k ≤ n}, and we denote the number of such partitions gn. By the product rule of combi-

natorics, the number of n-variable RSBFs is 2gn . Let φ(k) be Euler’s phi-function. Then,

from Burnside’s lemma [48],

gn =
1

n

∑
k|n

φ(k)2
n
k .

Let gn,w denote the number of partitions with w, the common weight of the vectors in par-

tition. The papers [45], [47], and [48] address the formula on how to calculate gn,w for

arbitrary n and w. It is also noteworthy that Zhang and Deng [57] corrected the enumera-

tion of Gn(x1, x2, . . . , xn) such that |Gn(x1, x2, . . . , xn)| = n in [48] and generalized the

enumeration for |Gn(x1, x2, . . . , xn)| = r where r |n.

Definition 3.3.3. Let

Gn(x1, . . . , xn) = {ρkn(x1, . . . , xn), for 1 ≤ k ≤ n},

be the orbit of (x1, . . . , xn) under the action of ρkn, 1 ≤ k ≤ n. It is clear thatGn(x1, . . . , xn)

generates a partition in the set Fn2 . A rotation-symmetric function f(x1, . . . , xn) can be
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written (for short) as

a0 ⊕ a1x1 ⊕
∑

a1jx1xj ⊕ · · · ⊕ a12...nx1x2 . . . xn (SANF ),

where the coefficients a0, a1, a1j, . . . , a12...n ∈ {0, 1}, and the existence of a representative

term x1xi2 . . . xil implies the existence of all the terms from Gn(x1xi2 . . . xil) in the ANF.

We call this representation of f the short algebraic normal form (SANF) of f .

Remark 3.3.4. We note that the SANF is not unique, since one can choose any represen-

tative in Gn(x1xi2 . . . xil).

Example 3.3.5. 5-variable RSBFs f and g are shown in ANF and SANF below.

f(x) = x1(SANF )

= x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5

g(x) = x1 ⊕ x1x2x5(SANF )

= x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x1x2x5 ⊕ · · · ⊕ x5x1x4

If the SANF of a RSBF contains only one term, we call such a function a monomial

rotation-symmetric (MRS) function. A simple number theoretic deduction gives us that the

ANF of a monomial rotation-symmetric function contains a divisor of n number of terms.

If that divisor is in fact n, we call the function a full-cycle MRS, otherwise, a short-cycle

MRS.
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Example 3.3.6. 6-variable RSBF f(x) = x1x2(SANF ) is a full-cycle MRS function, and

g(x) = x1x4(SANF ) are short-cycle MRS function, as shown below.

f(x) = x1x2 ⊕ x2x3 ⊕ x3x4 ⊕ x4x5 ⊕ x5x6 ⊕ x6x1

g(x) = x1x4 ⊕ x2x5 ⊕ x3x6

3.4. CIRCULANT MATRICES

One of the interesting matrices in linear algebra is a Toeplitz matrix. An n × n

Toeplitz matrix A = {aij} has a form

A =



a1 a2 a3 · · · · · · an

an+1 a1 a2
. . . ...

an+2 an+1
. . . . . . . . . ...

... . . . . . . . . . a2 a3

... . . . an+1 a1 a2

a2n−1 · · · · · · an+2 an+1 a1


.

Toeplitz matrices have various engineering applications and have been widely studied. A

circulant matrix is a special type of Toeplitz matrix where a2 = a2n−1, a3 = a2n−2, ... , and

an = an+1. We apply the principles found in the structure of a circulant matrix extensively

in our new findings. To be precise, we use the following definition for a circulant matrix.

Definition 3.4.1. An n × n matrix C is circulant, denoted by C(c1, c2, . . . , cn), if all its

rows are successive circular permutations of the first row, that is,
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C =



c1 c2 c3 · · · · · · cn

cn c1 c2
. . . ...

cn−1 cn
. . . . . . . . . ...

... . . . . . . . . . c2 c3

... . . . cn c1 c2

c2 · · · · · · cn−1 cn c1


,

where ci ∈ F for F is a field, and i ∈ {1, 2, . . . , n}.

We denote the set of all circulant matrices as C and the set of all n × n circulant

matrices as Cn.

We define the generating polynomial F of a circulant matrix C(c1, . . . , cn) by

F (x) = c1 + c2z + · · ·+ cnz
n−1.

It is clear that the circulant matrices are closed under matrix addition. That is, for

any two circulant matricesA andB,A+B is circulant as well. Additionally,A+B = B+A

and the associative property holds. Therefore, Cn forms an abelian group. We proceed to

prove another interesting fact about circulant matrices. We also observe that the transpose

of a circulant matrix C = C(c1, c2, . . . , cn), denoted by CT , is C(c1, cn, cn−1, . . . , c2)

Proposition 3.4.2. [56] An n × n matrix C = {cij} is circulant if and only if cij = cuv

whenever j − i ≡ u− v (mod n).

There exists a way to express a circulant matrix as a linear combination of a basis

of matrices. Let G be the n× n binary circulant matrix G = C(0, 1, 0, . . . , 0), which is
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G =



0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

... . . . ...
...

...
... . . . 1 0

0 0
. . . 0 1

1 0 0 · · · 0 0


.

The following lemma shows that the power of G, Gj , where 1 ≤ j ≤ n, form a

basis for the commutative algebra Cn.

Lemma 3.4.3. [58, p. 68] Let A ∈ Cn and A = C(a1, a2, . . . , an). Then

A =
n∑
i=1

aiG
i−1 =

∑
i∈∆(A)

Gi−1,

where ∆(A) = {i| ai = 1} ⊆ {1, 2, . . . , n}.

It is well-known that the circulant matrices in C commute in multiplication [58, p.

68]. Since some matrix properties in C may not hold in F2, we verify the commutativity.

Lemma 3.4.4. [56] Let A = C(a1, a2, . . . , an) and B = C(b1, b2, . . . , bn) be two elements

of Cn with ai, bi ∈ F2 for 1 ≤ i, j ≤ n . Then,
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AB = BA

= C

 n∑
i,j=1

i+j≡2 (mod n)

aibj,
n∑

i,j=1

i+j≡3 (mod n)

aibj, . . . ,

n∑
i,j=1

i+j≡1 (mod n)

aibj



= C

 ∑
i∈∆(A),j∈∆(B)

i+j≡2 (mod n)

aibj,
∑

i∈∆(A),j∈∆(B)

i+j≡3 (mod n)

aibj, . . . ,
∑

i∈∆(A),j∈∆(B)

i+j≡1 (mod n)

aibj


where ∆(A) = {i| ai = 1} ⊆ {1, 2, . . . , n} (ordered tuple).

Proof. Let

A =



a1 a2 a3 · · · · · · an

an a1 a2
. . . ...

an−1 an
. . . . . . . . . ...

... . . . . . . . . . a2 a3

... . . . an a1 a2

a2 · · · · · · an−1 an a1


, andB =



b1 b2 b3 · · · · · · bn

bn b1 b2
. . . ...

bn−1 bn
. . . . . . . . . ...

... . . . . . . . . . b2 b3

... . . . bn b1 b2

b2 · · · · · · bn−1 bn b1


.
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AB =



∑n
i,j=1

i+j≡2 (mod n)
aibj

∑n
i,j=1

i+j≡3 (mod n)
aibj · · · · · ·

∑n
i,j=1

i+j≡1 (mod n)
aibj∑n

i,j=1

i+j≡1 (mod n)
aibj

. . . ...∑n
i,j=1

i+j≡n (mod n)
aibj

. . . . . . . . . ...

... . . . . . . . . .

... . . . ...∑n
i,j=1

i+j≡3 (mod n)
aibj

∑n
i,j=1

i+j≡4 (mod n)
aibj · · ·

∑n
i,j=1

i+j≡2 (mod n)
aibj



= C

 n∑
i,j=1

i+j≡2 (mod n)

aibj,

n∑
i,j=1

i+j≡3 (mod n)

aibj, . . . ,
n∑

i,j=1

i+j≡n (mod n)

aibj,
n∑

i,j=1

i+j≡1 (mod n)

aibj


Since ai, bj ∈ F2,

= C

 ∑
i∈∆(A),j∈∆(B)

i+j≡2 (mod n)

biaj,
∑

i∈∆(A),j∈∆(B)

i+j≡3 (mod n)

biaj, . . . ,
∑

i∈∆(A),j∈∆(B)

i+j≡1 (mod n)

biaj


= BA.

Therefore, the claim holds.

Clearly, Cn has the associative property with respect to matrix multiplication. There-

fore, Cn forms a commutative monoid. Since Cn is an abelian group, Cn forms a commu-

tative algebra. We recall A ∈ Cn implies that AT ∈ Cn. Then, we have ATA = AAT by

Theorem 3.4.4. Therefore, Cn is normal.
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Corollary 3.4.5. [56] Let A = C(a1, a2, . . . , an) be a circulant matrix over F2. Then

A2 = C

 n⊕
i, j=1

i+j≡2 (mod n)

aiaj,
n⊕

i, j=1

i+j≡3 (mod n)

aiaj, . . . ,

n⊕
i, j=1

i+j≡n (mod n)

aiaj,

n⊕
i=1

i+j≡1 (mod n)

aiaj



=


C(a1, adn/2e+1, a2, adn/2e+2, . . . , adn/2e) if n is odd.

C(a1 + an/2+1, 0, a2 + an/2+1, 0, . . . , 0) if n is even.

Proof. Let

A = C(a1, a2, . . . , an)

=



a1 a2 a3 · · · · · · an

an a1 a2
. . . ...

an−1 an
. . . . . . . . . ...

... . . . . . . . . . a2 a3

... . . . an a1 a2

a2 · · · · · · an−1 an a1


.

By Lemma 3.4.4, we have

A2 = C

 n⊕
i, j=1

i+j≡2 (mod n)

aiaj,
n⊕

i, j=1

i+j≡3 (mod n)

aiaj, . . . ,
n⊕

i, j=1

i+j≡n (mod n)

aiaj,
n⊕

i, j=1

i+j≡1 (mod n)

aiaj

 .

If n = 2k + 1 for k = 0, 1, 2, ...,
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n⊕
i=1

i+j≡2 (mod n)

aiaj = a1a1 ⊕ a2a2k+1 ⊕ · · · ⊕ ak+1ak+2 ⊕ ak+2ak+1 ⊕ · · · ⊕ a2k+1a2

= a2
1 ⊕ 2a2k+1a2 ⊕ · · · ⊕ 2akak+3 ⊕ 2ak+1ak+2 = a1

n⊕
i=1

i+j≡3 (mod n)

aiaj = a1a2 ⊕ a2a1 ⊕ a3a2k+1 ⊕ · · · ⊕ a2
k+2 ⊕ · · · ⊕ a2k+1a3

= a2
k+2 ⊕ 2a1a2 ⊕ · · · ⊕ 2a3a2k+1 = ak+2

n⊕
i=1

i+j≡4 (mod n)

aiaj = a1a3 ⊕ a2a2 ⊕ a3a1 ⊕ a4a2k+1 ⊕ · · · ⊕ a2k+1a4

= a2
2 ⊕ 2a3a1 ⊕ · · · ⊕ 2a2k+1a4 = a2

...

n⊕
i=1

i+j≡1 (mod n)

aiaj = a1a2k+1 ⊕ a2a2k ⊕ · · · ⊕ a2
k+1 ⊕ · · · ⊕ a2ka2 ⊕ a2k+1a1

a2
k+1 ⊕ 2a1a2k+1 ⊕ · · · ⊕ 2a2ka2 = ak+1.

Therefore,

A2 = C (a1, ak+2, a2, ak+3, a3, . . . , ak, a2k+1, ak+1)

= C(a1, adn/2e+1, a2, adn/2e+2, . . . , adn/2e).

46



If n = 2k for k = 0, 1, 2, ...,

n⊕
i=1

i+j≡2 (mod n)

aiaj = a1a1 ⊕ a2a2k ⊕ · · · ⊕ akak+2 ⊕ ak+1ak+1 ⊕ ak+2ak ⊕ · · · ⊕ a2ka2

= a2
1 ⊕ a2

k+1 ⊕ 2a2a2k ⊕ · · · ⊕ 2akak+2 = a1 ⊕ ak+1

n⊕
i=1

i+j≡3 (mod n)

aiaj = a1a2 ⊕ a2a1 ⊕ a3a2k ⊕ a4a2k−1 ⊕ · · · ⊕ a2k−1a4 ⊕ a2ka3

= 2a1a2 ⊕ · · · ⊕ 2a2ka3 = 0

n⊕
i=1

i+j≡4 (mod n)

aiaj = a1a3 ⊕ a2a2 ⊕ a3a1 ⊕ a4a2k ⊕ · · · ⊕ ak+2 ⊕ · · · ⊕ a2ka4

= a2
2 ⊕ ak+2 ⊕ 2a3a1 ⊕ · · · ⊕ 2a2ka4 = a2 ⊕ ak+2

...

n⊕
i=1

i+j≡1 (mod n)

aiaj = a1a2k ⊕ a2a2k ⊕ · · · ⊕ a2ka2 ⊕ a2ka1

2a1a2k ⊕ · · · ⊕ 2a2ka2 = 0.

Therefore,
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A2 = C (a1 + ak+1, 0, a2 ⊕ ak+2, 0, a3 ⊕ ak+3, . . . , aka2k, 0)

= C(a1 ⊕ an/2+1, 0, a2 ⊕ an/2+1, 0, . . . , 0)

An n× n permutation matrix Pσ is an n× n matrix obtained by applying a permu-

tation σ ∈ Sn, where Sn is the symmetric group of the order n to the rows (or columns) of

the identity matrix In.

Definition 3.4.6. We define a relation denoted by∼ on Cn as follows. LetA1 = C(a1, . . . , an),

A2 = C(b1, . . . , bn). Then,

A1 ∼ A2 if and only if (a1, . . . , an) = ρk(b1, . . . , bn).

Due to reflexivity, symmetry, and transitivity of the relation, the relation ∼ is an equiv-

alence relation, which partitions C into equivalence classes. We denote the set of the

equivalent classes as C/∼. We further denote the equivalence class of C(a1, a2, . . . , an)

by C〈a1, a2, . . . , an〉 or 〈C(a1, a2, . . . , an)〉.

Lemma 3.4.7. [56] Let M1, M2 ∈ Cn, and let M−1
1 and M−1

2 exist. Then, M1 and M2

belong to the same equivalence class if and only if M−1
1 and M−1

2 also belong to the same

equivalence class.

Proof. We just prove the necessity; the sufficiency proof is similar. LetM1 =C(a1, a2, . . . , an),

M2 = C(b1, b2, . . . , bn) and M−1
1 = C(α1, α2, . . . , αn) and M−1

2 = C(β1, β2 . . . , βn). It is

sufficient to show that M−1
2 ∈ C 〈α1, α2, . . . , αn〉. We know that

(b1, b2, . . . , bn) = ρk(a1, a2, . . . , an)
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for some k. Thus,

M2 = PkM1

for some permutation matrix Pk = C(ρk(1, 0, . . . , 0)). Therefore, by taking the inverse of

the previous equation and Lemma 3.4.4,

M−1
1 = M−1

2 Pk

= PkM
−1
2 .

Therefore, M−1
1 and M−1

2 belong to the same equivalence class.

To conclude this section, we show that the equivalence classes of Definition 3.4.6

form a commutative monoid which contains a abelian group.

Theorem 3.4.8. [56] The set (C/∼ , ·) with the operation 〈A〉 · 〈B〉 := 〈AB〉 is a commuta-

tive monoid. Moreover, the previous operation partitions the invertible circulant matrices

C into equivalent classes, say C∗/∼, and consequently, (C∗/∼ , ·) becomes a group.

Proof. First, we show that the operation is well defined. Let A = C(a1, . . . , an) ∼ A′ =

C(a′1, . . . , a
′
n), B = C(b1, . . . , bn) ∼ B′ = C(b′1, . . . , b

′
n). We need to show that AB ∼

A′B′. By Lemma 3.4.4,

AB = C

 n∑
i,j=1

i+j≡2 (mod n)

aibj,

n∑
i,j=1

i+j≡3 (mod n)

aibj, . . . ,

n∑
i,j=1

i+j≡1 (mod n)

aibj



A′B′ = C

 n∑
i,j=1

i+j≡2 (mod n)

a′ib
′
j,

n∑
i,j=1

i+j≡3 (mod n)

a′ib
′
j, . . . ,

n∑
i,j=1

i+j≡1 (mod n)

a′ib
′
j

 .
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Let k and s be such that

ρk(a1, . . . , an) = (a1+k (mod n), . . . , an+k (mod n))

= (a′1, . . . , a
′
n)

and

ρs(b1, . . . , bn) = (b1+s (mod n), . . . , bn+s (mod n))

= (b′1, . . . , b
′
n).

Then, we have

A′B′ = C

 n∑
i,j=1

i+j≡2 (mod n)

ai+k (mod n)bj+s (mod n), . . . ,
n∑

i,j=1

i+j≡1 (mod n)

ai+k (mod n)bj+s (mod n)



= C

 n∑
i,j=1

i+j+k+s≡2 (mod n)

aibj,
n∑

i,j=1

i+j+k+s≡3 (mod n)

aibj, . . . ,
n∑

i,j=1

i+j+k+s≡1 (mod n)

aibj



= C

ρk+s

 n∑
i,j=1

i+j≡2 (mod n)

aibj,

n∑
i,j=1

i+j≡3 (mod n)

aibj, . . . ,

n∑
i,j=1

i+j≡1 (mod n)

aibj


 .

Therefore, we have

AB ∼ A′B′.
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It is immediate that the defined operation is associative, and the identity element is

C〈1, 0, . . . , 0〉=〈In〉, the class of the identity matrix. The commutative property follows

from Lemma 3.4.4. By Lemma 3.4.7, we can let 〈M〉−1 be the equivalence class of all

inverses of circulant matrices from 〈M〉. We have

〈M〉 · 〈M〉−1 = 〈M〉 · 〈M−1〉

= 〈In〉,

and the lemma is proved.

3.5. S-EQUIVALENCE OF MRS BOOLEAN FUNCTIONS

Definition 3.5.1. Let f, g ∈ Bnbe MRS functions. f and g are S-equivalent, denoted by

f
s∼ g if there exists a permutation matrix P such that

g(x) = f(xP ).

Example 3.5.2. [56] Let n = 7, and the quartic MRS functions

f(x) = x1x2x3x4 ⊕ x2x3x4x5 ⊕ x3x4x5x6 ⊕ x4x5x6x7

⊕x5x6x7x1 ⊕ x6x7x1x2 ⊕ x7x1x2x3,

g(x) = x1x2x4x6 ⊕ x2x3x5x7 ⊕ x3x4x6x1 ⊕ x4x5x7x2

⊕x5x6x1x3 ⊕ x6x7x2x4 ⊕ x7x1x3x5
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Using the permutation π = (2, 3, 5)(4, 7, 6) expressed in product of disjoint cycles, we

check that f ◦ π = g.

We associate f to the following circulant matrix equivalence class

Af = C
〈 1
↓
1, 0, . . . ,

j2
↓
1 , 0, . . . , 0,

j3
↓
1 , . . . , 0,

jd
↓
1 , . . . , 0

〉

=
〈
C(

1
↓
1, 0, . . . ,

j2
↓
1 , 0, . . . , 0,

j3
↓
1 , . . . , 0,

jd
↓
1 , . . . , 0)

〉
,

(3.1)

where the 1’s appear in positions prompted by the indices of any monomial of ANF of f .

We can illustrate ∆(f) = ∆(any representative of Af ). In general, for Af as in Equation

(3.1), then ∆(f) = [1, j2, . . . , jd] = [2, j2 + 1, . . . , jd + 1] = · · · . Also, the length of ∆(A)

is denoted by wt(∆(A)), which is the weight of any row of Af .

Example 3.5.3. [56] If n = 5 and f(x) = x1x2x4⊕ x2x3x5⊕ x3x4x1⊕ x4x5x2⊕ x5x1x3,

then

Af =
〈


1 1 0 1 0

0 1 1 0 1

1 0 1 1 0

0 1 0 1 1

1 0 1 0 1


〉

∆(f) = [1, 2, 4] = [2, 3, 5] = [1, 3, 4] = [2, 4, 5] = [1, 3, 5].

Lemma 3.5.4. [56] Let f be an MRS Boolean function, and Fi, i = 1, 2, be the gener-

ating polynomials for the circulant matrices M1 = C(a1, a2, . . . , an), respectively, M2 =

C(b1, . . . , bn) inAf , where (b1, . . . , bn) = ρk(a1, . . . , an), for some k. Then, gcd(F1(z), zn−

1) = gcd(F2(z), zn − 1).
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Proof. Since (b1, b2, . . . , bn) = ρk(a1, a2, . . . , an), for some k, we use an inductive argu-

ment to prove the lemma. Let k = 1. Then, (b1, b2, . . . , bn) = (an, a0, . . . , an−2). Now, we

need to show that

gcd(F1(z), zn − 1) = gcd(F2(z), zn − 1)

for

F1(z) = a1 + a2z + · · ·+ anz
n−1

and

F2(z) = an + a1z + · · ·+ an−1z
n−1.

Certainly,

zF1(z)− F2(z) = an(zn − 1). (3.2)

Since multiplying z by F1(z) does not change gcd(F1(z), zn − 1),

gcd(F1(z), zn − 1) = gcd(zF1(z), zn − 1).

By Equation 3.2

gcd(F1(z), zn − 1) = gcd(an(zn − 1) + F2(z), zn − 1).

By the Euclidean algorithm,

gcd(F1(z), zn − 1) = gcd(F2(z), zn − 1).
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For the inductive step, assume it is true for k = s. Then, we try to show for k = s+ 1. Let,

(b1, b2, . . . , bn) = (an−s, an−s+1, . . . , an−s−1). We need to show that

gcd(F1(z), zn − 1) = gcd(Fs+1(z), zn − 1)

for

F1(z) = a1 + a2z + · · ·+ anz
n−1

and

Fs+1(z) = an−s + an−s+1z + · · ·+ an−s−1z
n−1.

Let

Fs(z) = an−s+1 + an−s+2z + · · ·+ an−sz
n−1.

Then,

zFs(z)− Fs+1(z) = an−s(z
n − 1). (3.3)

Since multiplying z by Fs(z) does not change gcd(Fs(z), zn − 1),

gcd(Fs(z), zn − 1) = gcd(zFs(z), zn − 1).

By Equation 3.3

gcd(Fs(z), zn − 1) = gcd(an−s(z
n − 1) + Fs+1(z), zn − 1).

By the Euclidean algorithm,
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gcd(Fs(z), zn − 1) = gcd(Fs+1(z), zn − 1).

By the induction hypothesis, we conclude that

gcd(F1(z), zn − 1) = gcd(Fs+1(z), zn − 1),

which proves the lemma.

We introduce the concept of a generalized inverse.

Definition 3.5.5. For a square matrix A, we call a matrix A∗ of the same dimension a

generalized inverse if

AA∗A = A.

We call a matrix A† a reflexive generalized matrix if

AA†A = A

and

A†AA† = A†.

In addition, if both AA† and A†A are symmetric, then A† is called a (Moore–Penrose)

pseudoinverse of A. [59].

It is known that matrices over finite fields have at least one generalized inverse [60].

Also, if a pseudoinverse exists, it is unique [60]. However, it is not known if any of these

generalized inverses of circulant matrices are circulant. Our next result deals with that

problem, and, in the process, the first part generalizes the second, which was shown in [61,

Theorem 2.2].
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Theorem 3.5.6. [56] LetA = C(a1, . . . , an) be a circulant matrix over F2 of the generating

polynomial F = a1 + a2z + · · · + an−1z
n ∈ F2[z]. Let gcd(F (z), zn − 1) = D(z),

zn − 1 = H(z) · D(z), and assume that gcd(D(z), H(z)) = 1. Then, the following

statements hold:

(i) The polynomialF is invertible moduloH . That is, there existsF ∗(z) =
∑n

j=1 αjz
j−1

with F (z) ·F ∗(z) ≡ 1 (mod H(z)). Moreover, the circulant matrix A has a circulant gen-

eralized inverse, precisely, A · A∗ · A = A, where A∗ = C(α1, . . . , αn). Additionally, if

gcd(F, zn − 1) = gcd(F ∗, zn − 1), then A∗ is in fact the reflexive generalized inverse A†.

(ii) [61, Theorem 2.2] If gcd(F, zn− 1) = 1, then the matrix A is invertible and its

inverse is A−1 = C(α1, . . . , αn), where (α1, α2, . . . , αn) is the unique solution of

(α1, α2, . . . , αn) · A = (1, 0, . . . , 0).

Moreover, if F ∗(z) = α1 + α2z + · · ·+ αnz
n−1, then F (z) · F ∗(z) ≡ 1 mod (zn − 1).

Proof. The claim (ii) follows from (i). To show (i), let n = 2tm with m odd, and t

an arbitrary integer. By [62, p.63 Theorem 2.42 (ii)], every irreducible factor of zn − 1

over F2 appears at the power 2t. Let Φ(z) be an arbitrary irreducible factor of H(z) =

(zn − 1)/D(z). Since gcd(D(z), H(z)) = 1, gcd(F (z),Φ(z)) = 1. Therefore, the class

of F (z) is invertible in the ring F2[z]/
〈
Φ2t
〉
. This implies that there exists FΦ(z)∗ with

F (z) · FΦ(z)∗ ≡ 1 (mod Φ2t). Using the fact that H(z) =
∏

Φ distinct

Φ2t and applying

the Chinese remainder theorem, we obtain that there exists F ∗ with F (z) · F ∗(z) ≡ 1

(mod H(z)). Moreover, F ∗(z) is unique modulo H(z).

To show the second claim of (i), we assume that F · F ∗ ≡ 1 (mod H), where

F ∗(z) =
∑n

j=1 αjz
j−1, and we will show that AA∗A = A, where A∗ = C(α1, . . . , αn).

Let R be the quotient ring F2[z]/
〈
H(z)

〉
. Since D divides F and H divides FF ∗ − 1,

then zn − 1 = HD divides F (FF ∗ − 1) and so, we have the identity F 2F ∗ = F in

F2[z]/
〈
zn − 1

〉
. Multiplying out the polynomials F 2 and F ∗ and reducing modulo zn − 1,
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we obtain

∑
2i+k≡3 (mod n)

aiαk +

 ∑
2i+k≡4 (mod n)

aiαk

 z

+ · · ·+

 ∑
2i+k≡2 (mod n)

aiαk

 zn−1 =
n∑
`=1

a`z
`−1,

from which we infer that

C

 ∑
2i+k≡3 (mod n)

aiαk,
∑

2i+k≡4 (mod n)

aiαk,

. . . ,
∑

2i+k≡2 (mod n)

aiαk

 = C(a1, a2, . . . , an).

That is AA∗A = A.

Using gcd(F (z), zn − 1) = gcd(F ∗(z), zn − 1), by a similar argument as before,

we get that A is also a generalized inverse for A∗, that is, A∗AA∗ = A∗, which shows the

last claim of (i).

As for the pseudoinverse, we observe that the transpose of a circulant matrix A =

C(a1, a2, . . . , an) is At = C(a1, an, . . . , a2). Let i′ = (n + 2 − i) mod n, and k′ =

(n+ 2− k) mod n. Then, we have

AA∗ = C

 ∑
i+k≡2 (mod n)

aiαk,
∑

i+k≡3 (mod n)

aiαk, . . . ,
∑

i+k≡1 (mod n)

aiαk
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and

(AA∗)t = C

 ∑
i+k≡2 (mod n)

ai′αk′ ,
∑

i+k≡3 (mod n)

ai′αk′ , . . . ,
∑

i+k≡1 (mod n)

ai′αk′


= C

 ∑
i′+k′≡2 (mod n)

ai′αk′ ,
∑

i′+k′≡1 (mod n)

ai′αk′ , . . . ,
∑

i′+k′≡3 (mod n)

ai′αk′

 ,

which does not necessarily imply that AA∗ = (AA∗)t.

Remark 3.5.7. [56] It may be tempting to conjecture that every circulant matrix has a

generalized inverse that is circulant. However, during a computer exercise, we noticed that

the circulant matrix C(1, 0, 0, 1, 0, 0) does not have a circulant generalized inverse. We

observe that C(1, 0, 0, 1, 0, 0) corresponds to F (z) = 1 + z3 with n = 6. Since z6 − 1 =

F (z)2,

H(z) = D(z) = F (z).

So, we have

gcd(D,H) 6= 1.

Therefore, Theorem 3.5.6 does not apply, and F has no inverse modulo F .

We mention another way to detect singularity or nonsingularity of the associated

circulant matrix to an MRS. In [46], Stanica et al. found a characterization of Boolean

functions whose associated circulant matrices are singular.

Proposition 3.5.8. [46] Let f be a degree d MRS with associated Af = C
〈
a1, . . . , an

〉
(assume that a1 = 1). Let ∆(Af ) = [1, s2, . . . , sd]. Then, Af is singular if and only if there

is an n-th root of unity µ such that 1 + µs2 + · · ·+ µsd = 0 (over Z2).

Corollary 3.5.9. [46] With the notation of the previous proposition, we have
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(i) If wt(∆(Af )) is even, then Af is singular.

(ii) Let p be the least odd prime occurring in the factorization of n. Assume that

∆(Af ) = [1, s2, . . . , sd] has odd weight d and sd ≤ p− 2. Then Af is nonsingular.

We define the dual function with respect to a degree d MRS function f with invert-

ible Af . We consider the ordered set ∆(A−1
f ) = [j1, j2, . . . , jt] and define the MRS dual

function f ∗ by

f ∗ = xj1xj2 · · · xjt(SANF ).

Our next result gives an extension for the necessity part of Theorem 3.2.4.

Theorem 3.5.10. [56] Let f and g be two MRS Boolean functions in n-variables. If Af

and Ag are invertible and f s∼ g (f and g are affine equivalent by a permutation in Sn),

then wt(∆(f)) = wt(∆(g)) and wt(∆(f ∗)) = wt(∆(g∗)).

Proof. Since f s∼ g, then there exists a permutation τ ∈ Sn with Af◦τ = Ag. Clearly,

f and g have the same degrees. Therefore, wt(∆(f)) = wt(∆(g)). Let the SANF of f

be x1xj2 · · ·xjdwith I = {1, j2, . . . , jd}. We set Af = 〈C(a1, . . . , an)〉 such that ai = 1

if i ∈ I , and 0 otherwise. Using the same steps, we also let A−1
f = 〈C(α1, . . . , αn)〉,

Ag = 〈C(b1, . . . , bn)〉 , and A−1
g = 〈C(β1, . . . , βn)〉. Then we have

〈C(b1, . . . , bn)〉 =
〈
C(aπ(1), aπ(2), . . . , aπ(n))

〉
,

since Ag = Af◦τ , where π = τ−1. We introduce the notations ri(A) and ci(A) for the i-th

row and the j-th column of a matrix A, respectively. Since the permutation τ preserves

the rotation symmetry, there exists a permutation matrix such that every row of PAg (not

a circulant matrix any longer) is the permutation of the same indexed row of Af . Then we

have

ri(PAg) = π(ri(Af )).
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By the hypothesis, there exists the inverse matrix

U = A−1
f = 〈C(α1, . . . , αn)〉 .

Therefore, we have

ri(Af )U = ri(In)

and

ri(U)Af = ri(In).

Then, we can set

ri(Af ) = (ai,1, ai,2, . . . , ai,n)

= (an−i+2, . . . , an−i+1),

which is the i-th shift of the first row of Af . Let δi,j be the Kronecker delta function, that

is, δi,j = 1 if i = j, and δi,j = 0 otherwise. Since π is a permutation, we can interpret the

equation AfU = In in the following way:

ai,π(1)uπ(1),j + · · ·+ ai,π(n)uπ(n),j = δi,j, 1 ≤ i, j ≤ n. (3.4)

Let

U(π) =



uπ(1),1 · · · uπ(n),n

uπ(1),1 · · · uπ(n),n

· · · · · · · · ·

uπ(1),1 · · · uπ(n),n


.
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Then, we have

U(π) = PπU

where Pπ is the permutation matrix for π. Therefore, Equation (3.4) is simply ri(PAg)cj(U(π)) =

δi,j . Therefore,

PAgU(π) = In

and

U−1
(π)PAg = In.

Therefore,

r1

(
U−1

(π)P
)
Ag = r1(In).

Due to the uniqueness of Theorem 3.5.6,

r1

(
U−1

(π)P
)

= (β1, . . . , βn).

Recall that multiplication by a permutation matrix to the right has the effect of rearranging

the columns, and to the left has the effect of re-arranging the rows. Since U−1 is also

circulant, hence every row has the same weight, we obtain

wt(β1, . . . , βn) = wt
(
r1(U−1

(π)P )
)

= wt
(
r1(U−1

(π))
)

= wt
(
r1(P−1

π U−1)
)

= wt(r1(U−1))

= wt(α1, . . . , αn).
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Example 3.5.11. [56] Take n = 5, and f s∼ g whose SANFs are x1x2x4, respectively,

x1x2x3 (and so, wt(∆(f)) = wt(∆(g))). Certainly,

Af = C
〈
1, 1, 0, 1, 0

〉
, Ag = C

〈
1, 1, 1, 0, 0

〉

A−1
f = C

〈
0, 1, 1, 1, 0

〉
, A−1

g = C
〈
0, 1, 1, 0, 1

〉
,

and so, wt(∆(f ∗)) = wt(∆(g∗)) (in fact, in this case the dual of f is f ∗ = g). As an-

other example, we take n = 8, f, g with SANFs x1x2x4, respectively, x1x4x5 (and so,

wt(∆(f)) = wt(∆(g))). We compute

Af = C
〈
1, 1, 0, 1, 0, 0, 0, 0

〉
, Ag = C

〈
1, 0, 0, 1, 1, 0, 0, 0

〉

A−1
f = C

〈
1, 0, 1, 0, 0, 1, 1, 1

〉
, A−1

g = C
〈
0, 0, 1, 0, 0, 1, 1, 0

〉
,

and so, wt(∆(f ∗)) = 5 6= wt(∆(g∗)) = 3, therefore f 6 s∼ g.

Remark 3.5.12. The conditions wt(∆(f)) = wt(∆(g)), wt(∆(f ∗)) = wt(∆(g∗)) are not

sufficient to ensure that the functions f, g are S-equivalent. As an example, take n = 8

and f, g with ∆(f) = [1, 2, 3],∆(g) = [1, 2, 4]. The two functions are not in the same

S-equivalence class, yet wt(∆(f)) = wt(∆(g)) = 3 and wt(∆(f ∗)) = wt(∆(g∗)) = 5, as

one can check easily.

For a degree d MRS, whose class Af is not invertible, let the equivalence class of

the circulant pseudoinverse matrix denoted by A†f with ∆(A†f ) = [j1, j2, . . . , jt]. Then the

pseudo-dual Boolean function is

f † = xj1xj2 · · ·xjt ⊕ xj1+1xj2+1 · · · xjt+1 ⊕ · · · ⊕ xj1−1xj2−1 · · ·xjt−1.
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We propose the following question, which seems to be true, based on computer data.

Open Problem. [56] If f s∼ g with singular matrices Af and Ag, respectively

with circulant pseudoinverses, is it true that wt(∆(f)) = wt(∆(g)) implies wt(∆(f †)) =

wt(∆(g†))?

We now present some results obtained while pursuing the open problem.

Theorem 3.5.13. [56] Let f and g be two n-variables MRS with f
s∼ g, and Af =

C
〈
a1, . . . , an

〉
, Ag = C

〈
aπ(1), . . . , aπ(n)

〉
for some permutation π. The matrices have

pseudoinverses C
〈
α1 . . . , αn

〉
and C

〈
β1, . . . , βn

〉
, respectively. Let τ be the permutation

τ(1) = 1, τ(2) = dn/2e + 1, τ(3) = 2, τ(4) = dn/2e + 2, . . .. The following statements

are true:

(i) Let n be odd. Then

(a1, . . . , an) =
(
aτ(1), . . . , aτ(n)

)
C(α1, . . . , αn)

(α1, . . . , αn) =
(
ατ(1), . . . , ατ(n)

)
C(a1, . . . , an)

(
aπ(1), . . . , aπ(n)

)
=

(
a(π◦τ)(1), . . . , a(π◦τ)(n)

)
C(β1, . . . , βn)

(β1, . . . , βn) =
(
βτ(1), . . . , βτ(n)

)
C
(
aπ(1), . . . , aπ(n)

)
.
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(ii) Let n be even. Then

(a1, . . . , an) =
(
aτ(1) ⊕ aτ(2), 0, aτ(3) ⊕ aτ(4), 0, . . .

)
C(α1, . . . , αn)

(α1, . . . , αn) =
(
ατ(1) ⊕ ατ(2), 0, ατ(3) ⊕ ατ(4), 0, . . .

)
C(a1, . . . , an)

(
aπ(1), . . . , aπ(n)

)
=

(
a(π◦τ)(1) ⊕ a(π◦τ)(2), 0, . . .

)
C(β1, . . . , βn)

(β1, . . . , βn) =
(
βτ(1) ⊕ βτ(2), 0, . . . ,

)
C
(
aπ(1), . . . , aπ(n)

)
.

Proof. (i) Let n be odd. For the first part, by the definition of pseudoinverse,

(a1, . . . , an) = (1, 0, . . . , 0)C(a1, . . . , an)

= (1, 0, . . . , 0)C(a1, . . . , an)C(α1, . . . , αn)C(a1, . . . , an)

= (1, 0, . . . , 0)C(a1, . . . , an)2C(α1, . . . , αn).

Let Pτ be the permutation matrix for τ . By Corollary 3.4.5,

C(a1, . . . , an)2 = C(a1, adn/2e+1, a2, adn/2e+2, . . . , adn/2e)

= C((a1, . . . , an)Pτ )

= C(aτ(1), . . . , aτ(n)).
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Therefore,

(a1, . . . , an) = ((1, 0, . . . , 0)C(a1, . . . , an)2C(α1, . . . , αn)

= (1, 0, . . . , 0)C(aτ(1), . . . , aτ(n))C(α1, . . . , αn)

= (aτ(1), . . . , aτ(n))C(α1, . . . , αn).

The second part is immediate since C(α1, . . . , αn) is a pseudoinverse of C(a1, . . . ,

an), which shows that it is also reflexive inverse.

For the third part, let Pπ be the permutation matrix for π. Then, using Corollary

3.4.5,

(
aπ(1), . . . , aπ(n)

)
= (1, 0, . . . , 0)C

(
aπ(1), . . . , aπ(n)

)

= (1, 0, . . . , 0)C
(
aπ(1), . . . , aπ(n)

)2
C(β1, . . . , βn)

(
a(π◦τ)(1), . . . , a(π◦τ)(n)

)
C(β1, . . . , βn).

The fourth part is immediate, since C(β1, . . . , βn) is a reflexive inverse of C(aπ(1),

. . . , aπ(n)).

(ii) We can show this using similar techniques used in (i) with Corollary 3.4.5.

For an MRS function f , when Af does not have a pseudoinverse, but circulant

generalized inverses, the notion of dual is not well defined. Often, the weights of the

generalized inverses differ and the generalized inverses are not unique. However, they
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do correspond to a unique generalized inverse, which is the smallest in lexicographical

order, via the congruence modulo the corresponding H’s in Theorem 3.5.6. This unique-

ness is not readily recognizable in matrix form. Let us define the dual Boolean function

corresponding to that unique representative of all generalized inverses. Using this notion,

for singular Af and Ag without a pseudoinverse, but with circulant generalized inverses,

the condition wt(∆(f ∗)) = wt(∆(g∗)) does not hold. To illustrate this, let n = 7. We

check that f = x1x2x3x5(SANF ) and g = x1x2x3x6(SANF ) are S-equivalent. The

functions do not have pseudoinverses, but circulant general inverses. We computed all gen-

eralized inverses that are circulant, and they are in the classes A∗f = C
〈
1, 0, 0, 0, 0, 0, 0

〉
and A∗g = C

〈
1, 1, 0, 0, 0, 0, 0

〉
, respectively. Clearly, we have

wt(∆(f ∗)) 6= wt(∆(g∗)).

We now consider the case of a converse of our previous theorem. For simplicity, we

assume all indices are mod n. Let P and Q be permutation matrices. Then, it is known

that if two circulant matrices A and B are P -Q equivalent, that is, PA = BQ, then AAT

and BBT are similar matrices [63]. Moreover, it is straightforward to see that AAT =∑
i,j∈∆(A) G

ai−aj , where A = C(a1, . . . , an). This actually points to the importance of

the differences ai − aj , which played a role in Cusick’s paper [55], which only addresses

the MRS functions with wt(∆(f)) = 3. Given a permutation δ, we let Pδ be the row

permutation matrix corresponding to the permutation δ.

Theorem 3.5.14. [56] Let f and g be MRS functions with Af = C(a1, . . . , an), Ag =

C(b1, . . . , bn), respectively. Let a permutation matrices Pσ for the permutation σ and a

permutation matrix Qτ for the permutation τ such that PσAf = AgQτ . Then, wt(∆(f)) =

wt(∆(g)) and aσ(j)+i−1 = bτ(i)+j−1.

If Af and Bg are invertible, then we also have

(α1, . . . , αn) =
(
βσ−1(1)−τ(1)+n+1, . . . , βσ−1(n)−τ(1)+n+1

)
,
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and

wt(∆(f ∗)) = wt(∆(g∗))

where (α1, . . . , αn) = A−1
f and (β1, . . . , βn) = A−1

g .

Proof. Let Af = C(a1, . . . , an) and Ag = C(b1, . . . , bn). We write

PσAf =


aσ(1) aσ(1)+1 · · · aσ(1)+n−1

aσ(2) aσ(2)+1 · · · aσ(2)+n−1

· · · · · · · · · ·

aσ(n) aσ(n)+1 · · · aσ(n)+n−1



AgQτ =


bτ(1) bτ(2) · · · bτ(n)

bτ(1)+1 bτ(2)+1 · · · bτ(n)+1

· · · · · · · · · · · ·

bτ(1)+n−1 bτ(2)+n−1 · · · bτ(n)+n−1

 .

From PσAf = AgQτ , we derive

aσ(j)+i−1 = bτ(i)+j−1.

We note that the first rows of PσAf andAgQτ are the same. Also, the sets {σ(1), σ(1)+

1, . . . , σ(1) + n− 1} and {τ(1), τ(2), . . . , τ(n)} are simply permutations of {1, 2, . . . , n}.

Therefore, we see that

wt
(
aσ(1), aσ(1)+1, . . . , aσ(1)+n−1

)
= wt(a1, a2, . . . , an),

wt
(
bτ(1), bτ(2), . . . , bτ(n)

)
= wt(b1, b2, . . . , bn),
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and

wt(∆(f)) = wt(∆(g)).

From Theorem 3.5.6, αi and βi with 1 ≤ i ≤ n are unique with the property

(1, 0, . . . , 0) = (α1, . . . , αn)C(a1, . . . , an) (3.5)

(1, 0, . . . , 0) = (β1, . . . , βn)C(b1, . . . , bn).

We multiply the second relation by Qτ from the right and obtain

(0, . . . , 0,

τ(1)
↓
1 , 0, . . .) = (β1, . . . , βn)AgQτ

= (β1, . . . , βn)PσAf

=
(
βσ−1(1), . . . , βσ−1(n)

)
Af .

(3.6)

We multiply the last equation from the right by the permutation matrix Rρn+1−τ(1) , corre-

sponding to the shift ρn+1−τ(1), to rewrite the left hand side of (3.6) in the standard form

(1, 0, . . . , 0). Since Rρn+1−τ(1) is also a circulant matrix, by Lemma 3.4.4, it will commute

with Af and (3.6) becomes

(1, 0, . . . , 0) =
(
βσ−1(1), . . . , βσ−n(1)

)
Rρn+1−τ(1)Af

=
(
βσ−1(1)−τ(1)+1, . . . , βσ−1(n)−τ(1)+1

)
Af .

Since (α1, . . . , αn) was unique with the property (3.5),

(α1, . . . , αn) =
(
βσ−1(1)−τ(1)+1, . . . , βσ−1(n)−τ(1)+1

)
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where the indices are mod n. Since the indices above right are just a permutation of

{1, 2, . . . , n}, we immediately get wt(∆(f ∗)) = wt(∆(g∗)).

The previous theorem easily extends to the following corollary.

Corollary 3.5.15. [56] Let f and g be two full–cycle MRS functions with the invertible

classes Af and Ag, respectively. Let A−1
f = C

〈
α1, . . . , αn

〉
and A−1

g = C
〈
β1, . . . , βn

〉
. If

f
s∼ g, then there exists a permutation matrix P such that

P · (α1, . . . , αn)T = (β1, . . . , βn)T .
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4. MRS BOOLEAN FUNCTIONS AND GRAPHS

4.1. INTRODUCTION

The difficulty in the affine equivalence problem may be mitigated by establishing

relationships to other disciplines in mathematics for possible solutions. Graph theory stud-

ies the properties of a graph, which is a structure defined by a set of vertices (or nodes)

and a set of edges which connect vertices to each other. Often, a graph representation of

an algebraic structure helps us to visualize the complexity of the structure. One simple

example is visualization of a Boolean function using a tree, which is a graph in which each

pair of vertices is connected by a unique path. There have been many attempts to establish

meaningful relationships between graphs and Boolean functions. One of the interesting

connections involves bent functions and Cayley graphs. In [64], Bernasconi and Conde-

notti showed that the Walsh transforms of some Boolean functions can be analyzed by a

Cayley graph representation of Boolean functions. They later extended their finding to the

characterization of bent functions, using strongly regular graphs in [65]. In 2007, Stan-

ica [66] presented necessary conditions for bent functions and investigated the propagation

criteria of Boolean functions, using the Cayley graph representation. In this chapter, we

present some basic graph-theory material, briefly review the Cayley graph representation,

and present a new graph representation of MRS functions and some analysis in regard to

S-equivalence.

4.2. EXAMPLE OF GRAPH REPRESENTATION OF BOOLEAN FUNCTIONS

4.2.1. Definitions and Fundamentals of a Graph

A graph G = (V, E) is defined by a set of vertices, V or V (G) and a set of edges,

E or E(G) = {{x, y} |x, y ∈ V, andx 6= y}. If {x, y} ∈ E(G), we say that x and

y are adjacent. The number of edges that are incident with the vertex v is the degree of

v, denoted by deg(v). Two vertices are connected if we can go from one vertex to the
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other by traveling a path defined by the edges of the graph. A graph is connected if for

every pair of vertices, there exists a path of edges connecting them. If a graph is not

connected, it is disconnected. If each vertex of a graph G has the same degree, we call

G a regular graph. A regular graph G is strongly regular if there exist two integers m

and n such that every two adjacent vertices have m common neighbors, and every two

nonadjacent vertices have n common neighbors. A graph G is bipartite if V (G) can be

partitioned into two sets V1 and V2 such that there exists no edge {v, w} with v, w ∈ V1

or v, w ∈ V2. A graph G is complete if E(G) contains all possible edges. We denote the

complete graph on n vertices byKn. Another special graph we use in this chapter is a cycle.

In this thesis, we denote a cycle as [v1, v2, . . . , vn] where {v1, v2, . . . vn} ⊆ V (G) and E =

{{v1, v2}, {v2, v3}, . . . {vn−1, vn}, {vn, v1}}. Clearly, a cycle is a connected regular graph

(or subgraph) of degree 2. Next, we give a formal definition of equality and isomorphism

in graphs.

Definition 4.2.1. Two graphs G(VG, Eg) and H(VH , EH) are equal if

VG = VH andEG = EH .

The graphs G and H are isomorphic if there exists a bijection

f : VG → VH ,

such that for any vertices u, v ∈ VG, {u, v} ∈ EG if and only if {f(u), f(v)} ∈ EH .

Example 4.2.2. Let G1 be the graph with V (G1) = {1, 2, 3, 4, 5} and

E(G1) = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {4, 5}}. Sub-figure (a) of Figure 4.1 repre-

sents a drawing of G1. The graph G1 is not regular, since deg(1) = 2 and deg(2) = 3.

The graphs G1 and G2 are isomorphic by the permutation (1, 5)(2, 4). The graph G3 is K5

and clearly strongly regular. The graph G4 on the sub-figure (d) is the cycle [1, 2, 3, 4, 5, 6].

However, it is not strongly regular, since the vertices 1 and 3 have one common neigh-
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bor 2, but vertices 1 and 4 have no common neighbor. It is bipartite, with the partition

V1 = {1, 3, 5} and V2 = {2, 4, 6}.

(a) G1 (b) G2

(c) G3 (d) G4

Figure 4.1: Simple Graphs

4.2.2. An Example of Application of Graph Theory to Cryptographic Boolean
Function

There have been many attempts to establish relationships between graph theory and

Boolean functions. One of the most interesting relationships involves affine equivalence of

Boolean functions and Cayley graphs.
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Definition 4.2.3. [4, p. 194] Let f be a Boolean function of n variables. The Cayley graph

of f , denoted by Γf = (V,E), is defined by V = Fn2 and

E = {{v, w} | v, w ∈ Fn2 , v 6= w, and f(v ⊕ w) = 1}.

In [64], Bernasconi and Codenotti introduced the relationship between the Cayley

graph representation of Boolean functions and affine equivalent classes of four variable

Boolean functions. They established an isomorphism between the eight affine equivalent

classes of the 4-variable Boolean functions and eight classes of regular graphs with 16

vertices. Table 4.1 and Figure 4.2 illustrate their findings. They observed that, as the

nonlinearity increases in the affine equivalent classes, the degree and connectivity of the

matching graphs increase as well. Notably, Class V and VI graphs are degree 4-regular

graphs, but Class VI graph is connected, whereas Class V is disconnected. A supplemental

analysis of the relationship and other related materials can be found in [4, pp. 205–208].

4.3. A GRAPH REPRESENTATION OF ROTATION-SYMMETRIC BOOLEAN
FUNCTIONS

We recall that an MRS function has a cyclical structure in its algebraic normal form

(ANF). Adopting this feature, we attempt to represent a Boolean function with a graph

with a similar property. We observe that an MRS function is a homogeneous function

where each multiplication term of variables can be represented as a cycle. For example,

the MRS Boolean function f(x) = x1x2x3 ⊕ x2x3x4 ⊕ x3x4x5 ⊕ x4x5x6 ⊕ x5x6x1 ⊕

x6x1x2 of six variables can generate six cycles on vertices 1 through 6, that is [1, 2, 3],

[2, 3, 4], [3, 4, 5], [4, 5, 6],[5, 6, 1], and [6, 1, 2]. We can combine them, disregarding multiple

edges, and obtain the graph represented in Figure 4.3. We note that the graph is regular but

not strongly regular, since non-neighboring vertices 1 and 3 have the common neighbors

vertices 2 and 5, but 1 and 4 have the common neighbors 2, 3, 5, and 6.

However, this construction may present a problem with the ordering of variables.

Consider the following example.
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Class Boolean Function
I 0000000000000000
II 0000000000000001
III 0000000000000011
IV 0000000000000111
V 0000000000001111
VI 0000000000010111
VII 0000000100010111
VIII 0000001101011001

Class Walsh Spectrum
I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
II 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1
III 2 0 -2 0 -2 0 2 0 -2 0 2 0 2 0 -2 0
IV 3 -1 -1 -1 -3 1 1 1 -3 1 1 1 3 -1 -1 -1
V 4 0 0 0 -4 0 0 0 -4 0 0 0 4 0 0 0
VI 4 -2 -2 0 -2 0 0 2 -4 2 2 0 2 0 0 -2
VII 5 -3 -3 1 -3 1 1 1 -3 1 1 1 1 1 1 -3
VIII 6 -2 -2 2 -2 -2 2 -2 -2 2 -2 -2 -2 2 2 2

Table 4.1: Affine Equivalence Classes of 4-Variable Boolean Functions From [64]

Example 4.3.1. Let f = x1x2x3x4(SANF ) ∈ F6
2. Algebraically, x1x2x3x4 = x1x3x2x4.

However, they generate two different cycles and hence two different graph representations

as shown in Figure 4.4.

This indicates that the cyclic representation of MRS is sensitive to the order of

variables. In order to obtain a consistent graph not affected by this ordering problem, we

introduce the following notion, adding an order property to the definition of SANF.

Definition 4.3.2. Let f be an MRS function of n variables with the SANF xj1xj2 · · · xjd ,

where 1 ≤ d ≤ n. The ordered short algebraic normal form (OSANF) of f , denoted by

f = x1xi2 · · ·xid(OSANF ) or f = ‖x1xi2 · · ·xid‖ is the SANF xi1xi2 · · ·xid such that

i1 = 1 and 1 = i1 < i2 < · · · < id.

By Definition 4.3.2, our scheme generates one and only one graph for each MRS

Boolean function.
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(a) Class I (b) Class II

(c) Class III

(d) Class IV

(e) Class V

(f) Class VI

(g) Class VII

(h) Class VIII

Figure 4.2: Cayley Graph Classes of 4-Variable Boolean Function From [64]

Definition 4.3.3. A cycle combination graph (CCG) of an n-variable MRS Boolean func-

tion f(x) = x1xP2xP3 . . . xPd(OSANF ) with d ≤ n, denoted byGf is a simple graph with

V = {1, 2, . . . n} and the edges of the cycles,

[1, P2, P3, . . . , Pd]

[2, P2 + 1 mod n, P3 + 1 mod n, . . . , Pd + 1 mod n], and

[n, P2 + n− 1 mod n, P3 + n− 1 mod n, . . . , Pd + n− 1 mod n, ],
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(a) Cycle 1 (b) Cycles 1 and 2

(c) Cycles 1 - 3 (d) Cycles 1 - 4

(e) Cycles 1 - 5 (f) Cycles 1 - 6

Figure 4.3: A Cycle Combination of an MRS Boolean Function
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(a) x1x2x3x4(SANF ) (b) x1x3x2x4(SANF )

Figure 4.4: Two Graphs Generated by the Same SANF

regarding multiple edges as one edge.

Remark 4.3.4. In order to make our algebraic operations for the indices work, we add an

additional property to the modular arithmetic in this chapter.

We set

n mod n = 0.

This gives us x0 = xn, and we use the notations interchangeably.

We observe that two Boolean functions in Bn form a relationship with respect to

the CCG. The relationship satisfies reflexivity, symmetry, and transitivity. Therefore, it is

an equivalence relation and partitions the Boolean functions of n variable into equivalence

classes.

Definition 4.3.5. Two MRS functions of same variables f and h are cycle combination

graph (CCG) equivalent, denoted by f C∼ h if Gf is isomorphic to Gh.

MRS functions add interesting characteristics to the structure of CCGs. These char-

acteristics originate from the cycles generated by shifting variables. Table 4.2 illustrates

how shifting along the indices of the variables effect the cycles.
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Rotation Vertex Index Shift
P1 = 1 P2 P3 · · · · · · Pd

2 P2 + 1 mod n P3 + 1 mod n · · · · · · Pd + 1 mod n
3 P2 + 2 mod n P3 + 2 mod n · · · · · · Pd + 2 mod n
...

...
...

...
m P2 +m− 1 mod n P3 +m− 1 mod n Pd +m− 1 mod n
...

...
... · · · · · · ...

n− 1 P2 + n− 2 mod n P3 + n− 2 mod n · · · · · · Pd + n− 2 mod n
n P2 + n− 1 mod n P3 + n− 1 mod n · · · · · · Pd + n− 1 mod n

Table 4.2: Vertex Structure of a Cycle Combination Graph of a MRS Function

In order to analyze what happens at each vertex, we measure the distance from

each variable in the monomial term to xn. Let ki be the distance from xPi to xn defined by

ki = n− Pi. Therefore, we have

k1 = n− 1,

k2 = n− P2,

...

...

kd = n− Pd.

Additionally, since we are working with the cycles derived from the variables of a Boolean

function in ANF, we can measure the distance between the vertices in the following manner.

Let ri be the distance between xPi+1
and xPi defined by ri = Pi+1 − Pi. Then, we have
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r1 = P2 − P1,

r2 = P3 − P2, (4.1)
...
...

rd = Pd+1 − Pd,

where Pd+1 = n+ 1.

We focus on vertex 1. Vertex 1 connects 2d times, as shown in Table 4.3.

Shift Vertex 1 and its Neighbors by Shift
0 Pd P1 = 1 P2

1 P1 + k2 + 1 mod n P2 + k2 + 1 mod n = 1 P3 + k2 + 1 mod n
2 P2 + k3 + 1 mod n P3 + k3 + 1 mod n = 1 P4 + k3 + 1 mod n
...

...
...

...
d-1 Pd−1 + kd + 1 mod n Pd + kd + 1 mod n = 1 P1 + kd + 1 mod n

Table 4.3: Vertex 1 and its Neighbors

By applying the descriptions of ki and ri with 1 ≤ i ≤ d, we see that a set of edges

on vertex P1 = 1, as justified below:

{1, 1± r1 (mod n)}

{1, 1± r2 (mod n)} (4.2)
...
...

{1, 1± rd (mod n)}.
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By the shifting action of the CCG generation, the set of edges replicates on each

vertex, depending only on ri’s. Therefore, by an inductive argument, we can generalize the

result for any vertex. Table 4.4 shows the neighbors of an arbitrary vertex m.

Shift Neighbors of Vertex m
0 Pd +m− 1 mod n m P2 +m− 1 mod n
1 P1 + k2 +m mod n P2 + k2 +m mod n = m P3 + k2 +m mod n
2 P2 + k3 +m mod n P3 + k3 +m mod n = m P4 + k3 +m mod n
...

...
...

...
d-1 Pd−1 + kd +m mod n Pd + kd +m mod n = m P1 + kd +m mod n

Table 4.4: 2d Neighbors of Arbitrary Vertex m

Applying the same argument as for the vertex 1, we obtain the following neighbors

{m, m± r1 (mod n)},

{m, m± r2 (mod n)}, (4.3)
...
...

{m, m± rd (mod n)}.

This generalization suggests that the CCGs are regular, since a CCG is a simple graph.

Theorem 4.3.6. Let f be an MRS function of n variables generated by x1xp2 . . . xpd(OSANF )

and Gf be the CCG of f . Then Gf is regular.

In particular, Gf is

∣∣∣∣{{1, 1± ri (mod n)} | 1 ≤ i ≤ d}
∣∣∣∣-regular,

where ri are defined as in Equation 4.1.
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Proof. By Equation 4.3, vertex 1 has 2d many edges, counting multiple edges, and the

cardinality of

{{1, 1± ri (mod n)} | 1 ≤ i ≤ d}

gives us the number of edges at each vertex, counting multiple edges as one. Also, the

degree of a vertex does not depend on the vertex, as discussed. Therefore, the claim holds.

Generally, each distinct ri adds two edges to a vertex, except when the two edges

coincide with each other. We see that the exception results in an r-regular graph, where r

is an odd number.

Corollary 4.3.7. Let f = x1xp2 . . . xpd(OSANF ) be a MRS function of n variables. Then,

Gf is t-regular graph where t = 2k1 − 1 for some k1 ∈ N if and only if n = 2k2 for some

integer k2 ∈ N , and there exists i with 1 ≤ i ≤d such that ri = k2.

Proof. (⇐) In line with Theorem 4.3.6, for an arbitrary vertex m, we have two edges

{m,m+ k2 mod n} and {m,m− k2 mod n}. Since n = 2k2,

m+ k2 mod n = m− k2 mod n.

Hence, ri = k2 adds one edge to Gf . Additionally, any ri 6= k2 adds two edges to

Gf . Therefore, Gf is t-regular graph where t = 2k1 − 1 for some k1 ∈ N.

(⇒) First, we claim n is even. If n is odd, Theorem 4.3.6 implies that each ri adds

two distinct edges to a vertex. This contradicts that t is odd. In addition, if ri 6= k2 for all

i, then we see that ri’s add two edges to the vertex, which makes t even, a contradiction.

Therefore, the claim holds.

Using Table 4.2, we generate some possible configurations of graphs for MRS func-

tions in Figure 4.5. They suggest that the CCGs for the functions of the order greater than

three are generated by the union of CCGs of quadratic functions. However, when n = 5, the
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(a) n = 2

(b) n = 3

(c) n = 4

(d) n = 5

Figure 4.5: Isomorphic Cycle Combination Graph Classes n = 2 to 5

CCG K5 is generated by two cycles [1, 2, 3, 4, 5] and [1, 3, 5, 2, 4], which are the CCGs of

x1x2(OSANF ) and x1x3(OSANF ), respectively, and they are isomorphic to each other.

This shows that generating quadratic functions may be isomorphic in their CCGs. Further-

more, Equation 4.3 suggests that we get a pair of edges from a quadratic function, which

generates the CCG by shifting n times through the vertices. This implies that the space of
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CCGs for n variable Boolean functions can be generated by the CCGs of quadratic func-

tions,

x1x2(OSANF ), x1x3(OSANF ), . . . , andx1xbn2 c(OSANF ).

Therefore, given n variable MRS Boolean functions, the maximum number of pos-

sible CCGs is

bn2 c∑
i=0

(⌊
n
2

⌋
i

)
= 2b

n
2 c.

This gives us the following lemma.

Lemma 4.3.8. Given n ∈ N, the maximum number of CCGs of an n-variable MRS is

bounded above by 2b
n
2 c.

The bound in Lemma 4.3.8 cannot improve to equality, since we have cases where

some unions of the quadratic CCGs are impossible under certain conditions. We illustrate

this in the following example.

Example 4.3.9. In Figure 4.6, the sub-figures (b) through (d) form a basis for the graph

space for n = 6, which generates the rest of the CCG’s, the sub-figures (e) through (g).

We note that the configuration in Figure 4.7 is not a possible CCG. The graph is a

combination of Gc and Gd in Figure 4.6. Therefore, we have to use the edges connecting

two numbers apart by 2 or 3. This implies that we cannot complete a cycle in Figure 4.7

without violating the order structure of CCG. In other words, it is equivalent to a partition

on six identical objects with parts of two and three only, which is impossible. So far, we

focused on the fact that the difference between the indices of variables generate two edges

at a vertex of the CCG. We note that we just need one of the two edges, and so we can

simplify the notion with the next definition.

Definition 4.3.10. Let f = x1xP2xP3 . . . xPd(OSANF ). Let ri be as in Equation 4.1.

The distance set of f , denoted by DS(f), is the set
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(a) Ga (b) Gb

(c) Gc (d) Gd

(e) Ge (f) Gf

(g) Gg

Figure 4.6: Cycle Combination Graphs n = 6

{ai|ai = min(ri, n− ri), 1 ≤ i ≤ d} .
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Figure 4.7: An Impossible CCG n = 6

We call ai a distance element of f .

It is clear that each ri generates, at most, one distance element.

Lemma 4.3.11. Let f be an MRS function of n variables whose CCG is an r-regular graph.

Then,

|DS(f)| =
⌈r

2

⌉
.

Proof. If n is odd, by the construction of CCG and Definition 4.3.10, each distance element

generates two edges for a vertex of Gf , and so

|DS(f)| = r

2
=
⌈r

2

⌉
.

However, if n is even, we consider two cases. If r is even, by the construction of CCG and

Definition 4.3.10, each distance element generates two edges for a vertex of Gf , and so

|DS(f)| = r

2
=
⌈r

2

⌉
.

If r is odd, by Corollary 4.3.7, we know

n

2
∈ DS(f),
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and the distance element
n

2
generates only one edge (or two overlapping edges) while each

of the other distance elements generates two edges. So, we have,

|DS(f)| =
⌈r

2

⌉
.

One of the characteristics of a quadratic MRS function f is that |DS(f)| = 1.

However, not every MRS function f with |DS(f)| = 1 is a quadratic function. The next

lemma addresses the case where a CCG of a quadratic MRS function is generated by a

non-quadratic function.

Lemma 4.3.12. Let f be an MRS function of n variable. Then there exists a quadratic

MRS function h such that

Gh = Gf

if and only if

f = x1xd(OSANF )

for some 2 ≤ d ≤ n or some non-quadratic MRS function f such that

|DS(f)| = 1.

Proof. (⇒) Assume the conclusion is not true. Then, we have |DS(f)| > 1. Since

|DS(f)| > 1 generates more than two edges at a vertex of Gf , there exists no quadratic

MRS function h such that

Gh = Gf ,

which is a contradiction.
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(⇐) If f = x1xd(OSANF ), the conclusion is immediate. If f 6= x1xd(OSANF )

and DS(f) = {k} for 1 ≤ k ≤
⌈
n
2

⌉
, we can set

h = x1xk(OSANF ).

Example 4.3.13. Let n = 6, and

f1 = x1x2(OSANF )

f2 = x1x2x3x4x5x6(OSANF )

h1 = x1x3(OSANF )

h2 = x1x3x5(OSANF ).

Clearly, we have

|DS(f1)| = |DS(f2)| = |DS(h1)| = |DS(h2)| = 1,

Gf1 = Gf2

and

Gh1 = Gh2 .
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Lemma 4.3.14. Let f = x1xixk(OSANF ) be a cubic MRS function of n variables. Let a,

b, and c be distance elements of x1xi(OSANF ), x1xk−i+1(OSANF ), and x1xk(OSANF ),

respectively. Then, the following statements are true:

(1) If a 6= b, a 6= c, and b 6= c, then

Gf = G‖x1xi‖ ∪G‖x1xk−i+1‖ ∪G‖x1xk‖.

(2) If a 6= b and b = c, or a 6= b and a = c, then

Gf = G‖x1xi‖ ∪G‖x1xk−i+1‖.

(3) If a = b and b 6= c, then

Gf = G‖x1xi‖ ∪G‖x1xk‖.

(4) If a = b = c, then

Gf = G‖x1xi‖.

Proof. For all instances, it is clear that

V (Gf ) = V (G‖x1xi‖) = V (G‖x1xk−i+1‖) = V (G‖x1xk‖).

So we focus on the equality of the edge sets.

(1) Since a 6= b, a 6= c, and b 6= c, an arbitrary vertex m has the edges
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{m, m± a (mod n)}

{m, m± b (mod n)}

{m, m± c (mod n)}.

Also, each distance element generates a unique corresponding edge set. We have

{{j, j + a (mod n)}|1 ≤ j ≤ n} = E(G‖x1xi‖)

{{j, j + b (mod n)}|1 ≤ j ≤ n} = E(G‖x1xk−i+1‖)

{{j, j + c (mod n)}|1 ≤ j ≤ n} = E(G‖x1xk‖).

Therefore,

E(Gf ) = E(G‖x1xi‖) ∪ E(G‖x1xk−i+1‖) ∪ E(G‖x1xk‖),

and the claim holds.

(2) Since a 6= b and b = c (or a 6= b and a = c), an arbitrary vertex m has the edges

{m, m± a (mod n)}

{m, m± b (mod n)},
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Since the distance elements generate the following edges,

{{j, j + a (mod n)}|1 ≤ j ≤ n} = E(G‖x1xi‖)

{{j, j + b (mod n)}|1 ≤ j ≤ n} = E(G‖x1xk−i+1‖).

Therefore,

E(Gf ) = E(G‖x1xi‖) ∪ E(G‖x1xk−i+1‖),

and the claim holds.

(3) The proof is similar to the one for (2).

(4) Since a = b = c, an arbitrary vertex m has the edges

{m, m± a (mod n)}.

The distance element generates the following edges

{{j, j + a (mod n)}|1 ≤ j ≤ n} = E(G‖x1xi‖).

Therefore,

E(Gf ) = E(G‖x1xi‖),

and the claim holds.
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When we create another MRS by adding another variable, we can increase the car-

dinality of the distance set by at most two. Using this, we further generalize the idea of

Lemma 4.3.14.

Lemma 4.3.15. Let f = x1xixj(OSANF ) and h = x1xixjxk(OSANF ) be MRS func-

tions of n variable. Let a, b, and c be distance elements of x1xj(OSANF ), x1xk−j+1(OSANF ),

and x1xk(OSANF ), respectively. Then, the following statements are true:

(1) If DS(h) = DS(f), then

Gh = Gf

(2) If |DS(h)| = |DS(f)|+ 1, and a is a redundant distance element of f , then,

b = c

and

Gh = Gf ∪G‖x1xk‖.

(3) If |DS(h)| = |DS(f)|+ 1 and a is not a redundant distance element of f ,

b 6= c

and

Gh = Gf ∪G‖x1xk−j+1‖ ∪G‖x1xk‖ −G‖x1xj‖.

(4) If |DS(h)| = |DS(f)|+ 2, a is a redundant distance element of f ,

b 6= c,

and
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Gh = Gf ∪G‖x1xk−j+1‖ ∪G‖x1xk‖ −G‖x1xj‖.

Proof. For all instances, the function h is obtained by removing the distance element a and

adding the distance elements b and c. We can construct Gh from Gf , tracking the changes

from DS(f) to DS(h). Clearly,

V (Gf ) = V (Gh).

We also have a general construction of the edge set of Gh.

E(Gh) = E(Gf ) ∪ E(G‖x1xk−j+1‖) ∪ E(G‖x1xk‖)− E(G‖x1xj‖).

(1) Since DS(h) = DS(f), we have

E(Gf ) = E(Gf )− E(G‖x1xj‖),

and

E(Gf ) ⊇ E(G‖x1xk−j+1‖) ∪ E(G‖x1xk‖).

Therefore,

E(Gf ) = E(Gh).

(2) Since a is a redundant distance element of f ,

E(Gf ) = E(Gf )− E(G‖x1xj‖).

Since |DS(h)| = |DS(f)|+ 1, b = c, or equivalently
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E(G‖x1xk−j+1‖) = E(G‖x1xk‖).

Therefore,

Gh = Gf ∪G‖x1xk‖.

(3) Since a is not a redundant distance element of f ,

E(Gf ) ⊃ E(Gf )− E(G‖x1xj‖).

Additionally, |DS(h)| = |DS(f)|+ 1. So, we have to have b 6= c. Therefore,

E(Gh) = E(Gf )− E(G‖x1xj‖) ∪ E(G‖x1xk−j+1‖) ∪ E(G‖x1xk‖).

(4) If a is not a redundant distance element, or b 6= c , we haveDS(h) = DS(f)+1

at most, which is a contradiction. Clearly,

E(Gh) = E(Gf )− E(G‖x1xj‖) ∪ E(G‖x1xk−j+1‖) ∪ E(G‖x1xk‖),

and the claim follows.

We extend Lemma 4.3.15 to the next theorem, whose proof is omitted, since it is

somewhat similar.

Theorem 4.3.16. Let f = x1xi2xi3 · · ·xi(k−1)xik(OSANF ) and h = x1xi2xi3 · · ·xikxi(k+1)

(OSANF ) be MRS functions of n variables. Let a, b, and c be distance elements of

x1xik(OSANF ), x1xi(k+1)−ik+1(OSANF ), and x1xi(k+1)(OSANF ), respectively. Then,

the following statements are true:

(1) If DS(h) = DS(f), then

Gh = Gf .
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(2) If |DS(h)| = |DS(f)|+ 1, and a is a redundant distance element of f , then,

b = c

and

Gh = Gf ∪G‖x1xi(k+1)‖.

(3) If |DS(h)| = |DS(f)|+ 1 and a is not a redundant distance element of f ,

b 6= c

and

Gh = Gf ∪G‖x1xi(k+1)−ik+1‖ ∪G‖x1xi(k+1)‖ −G‖x1xik‖.

(4) If |DS(h)| = |DS(f)|+ 2, then a is a redundant distance element of f ,

b 6= c,

and

Gh = Gf ∪G‖x1xi(k+1)−ik+1‖ ∪G‖x1xi(k+1)‖ −G‖x1xik‖.

The following theorems can be proved by fundamental number- and graph-theoretic

techniques.

Theorem 4.3.17. Let f be an MRS function of n variables. If Gf is disconnected, then

1 /∈ DS(f), and every element in DS(f) divides n.

Proof. We prove this by contradiction. First, if 1 ∈ DS(f), Gf clearly contains the cycle

[1, 2, . . . , n]. Therefore, it is connected, which is a contradiction. Also, if there exists a

distance element a of f such that a - n, a is a generator of the group Zn with respect to

addition modulo n. And, we see that the following set of edges form Cn:
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{{1, 1 + a}, {1 + a, 1 + 2a mod n}, . . . {1 + (n− 1)a mod n, 1 + na mod n}}

= {{1, 1 + a}, {1 + a, 1 + 2a mod n}, . . . {1 + (n− 1)a mod n, 1}}.

This contradicts the fact that Gf is disconnected, since Cn ∈ Gf implies Gf is connected.

Figure 4.8: CCG of f = x1x3x6x9(OSANF )

The converse of the previous theorem does not hold, since there are instances where

we can form a connected CCG with the nonzero distance elements that divide n. For

example, let n = 12. Then, f = x1x3x6x9(OSANF ) has 1 /∈ DS(f) = {2, 3, 4} and

2|12, 3|12 and 4|12. However, Gf is connected, as seen on Figure 4.8. Next, we present a

case where a CCG happens to be a complete graph.

Theorem 4.3.18. Let f be an MRS function of n variables. Then, Gf is complete if and

only if DS(f) = {1, 2, . . . ,
⌊
n
2

⌋
}.

Proof. (⇒) Since Gf is regular, we make a case for the vertex 1. Since Gf is complete,

vertex 1 is incident to the set of edges edges
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{{1, 2}, {1, 3}, . . . , {1, n}}.

By Definition 4.3.10,

DS(f) = {min(2− 1, n− 1− 2),min(3− 1, n− 1− 3), . . .min(n− 1, n− n+ 1)}

= {1, 2, . . . ,
⌊n

2

⌋
}.

(⇐) By definition 4.3.10, the vertex 1 has a set of edges

{1, 1± 1 mod n}, {1, 1± 2 mod n}, . . . , {1, 1±
⌊n

2

⌋
}

= {{1, 1}, {1, 2}, . . . , {1, n}}.

Corollary 4.3.19. Let f be an MRS function of n variables. If Gf = Kn, then deg(f) ≥⌊
n
2

⌋
.

Proof. By Theorem 4.3.18, |DS(f)| =
⌊
n
2

⌋
. Therefore, f needs at least

⌊
n
2

⌋
variables in

its OSANF.
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5. TWO CONSTRUCTIONS OF BOOLEAN FUNCTIONS WITH
GOOD CRYPTOGRAPHIC PROPERTIES

5.1. INTRODUCTION

The two key factors in designing cryptographic Boolean functions are security and

speed. We achieve security by having good measures in as many cryptographic properties

as possible for the Boolean functions in a cipher, such as balancedness to resist statistical

attacks, high nonlinearity to address linear cryptanalysis, high algebraic degree against al-

gebraic attacks, correlation immunity and resilience to deal with correlation attacks, and

algebraic immunity to resist (fast) algebraic attacks. Speed is another important aspect,

since we desire fast encryption and decryption. For example, the Carlet–Feng function has

good cryptographic properties, but compared to other functions, it is not simple to gener-

ate or implement. This may cause certain ciphers to underperform. Security and speed

often conflict with each other, since higher security usually implies slower speed. Here

we present two constructions for good cryptographic Boolean functions, using a crypto-

graphically strong base function, and three simple Boolean operations, namely affine trans-

formation, concatenation, and complementation. One of the significant benefits from this

construction is the flexibility to choose a base function with customizable cryptographic

properties. We achieve security from the inherent qualities of the base function and ob-

tain speed by the simple Boolean operations. In Chapter 6, we give applications for our

constructions. This chapter is based on Chung, Stanica, Tan, and Wang [27].

5.2. CONSTRUCTION TECHNIQUES OF CRYPTOGRAPHIC BOOLEAN FUNC-
TIONS

In this section, we review fundamental construction techniques for cryptographic

Boolean functions.
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5.2.1. Concatenation

Given two base Boolean functions of f and g, both belonging to Bn, we can con-

struct another Boolean function, h ∈ Bn+1, by concatenating their truth tables. We note

that since the new function has to have 2n+1 elements in its truth table, the two functions

concatenated must have the same number of variables or be the same length. To illustrate

this point, if h = f ‖ g, h ∈ Bk, f ∈ Bk1, and Bk2 with k1, k2 ∈ N and k1 6= k2, we

have 2k = 2k1 + 2k2 = 2k1(1 + 2k1−k2). This implies 2k has an odd factor, which is a

contradiction. Therefore, we provide the following preposition.

Proposition 5.2.1. Let f and g be two Boolean functions. If h = f ‖ g, then f and g have

the same number of variables.

Concatenating two Boolean functions introduces a new variable to the ANF of the

concatenated function. The following useful lemma illustrates how we can obtain the ANF

of the new function from the ANFs of the base functions.

Lemma 5.2.2. Let f, g ∈ Bn−1. If h = f ‖ g with h ∈ Bn, then

h(x) = (xn ⊕ 1)f(xn−1)⊕ xng(xn−1),

where xn−1 = (x1, x2, . . . , xn−1) and x = (x1, x2, . . . , xn).

Example 5.2.3. We illustrate Lemma 5.2.2 with two functions f and g on Table 5.1. We

can convert the truth tables to ANFs as below.

f(x) = x1 ⊕ x2 ⊕ x3 ⊕ x1x3 ⊕ x2x3 ⊕ x1x2x3

g(x) = 1⊕ x1 ⊕ x3 ⊕ x1x2 ⊕ x2x3 ⊕ x1x2x3

We confirm the following equation of ANFs of the functions using Lemma 5.2.2

and Table 5.2.
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x3 x2 x1 f(x) g(x)

0 0 0 0 1
0 0 1 1 0
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 1 1
1 1 0 1 1
1 1 1 0 0

Table 5.1: Truth Table of f and g

h(x) = (x4 ⊕ 1)f(xn−1)⊕ x4g(xn−1)

= x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x1x3 ⊕ x2x3 ⊕ x2x4 ⊕ x1x2x3 ⊕ x1x2x4 ⊕ x1x3x4

x4 x3 x2 x1 h(x)

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0

x4 x3 x2 x1 h(x)

1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

Table 5.2: Truth Table of h = f ‖ g

The following theorem by Siegenthaler shows that a technique as simple as con-

catenation can be used to preserve certain cryptographic properties.

Theorem 5.2.4. [23] If Boolean functions f, g ∈ Bn have correlation immunity of order

k, then h = f ‖ g has correlation immunity of order k.
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5.2.2. Kronecker Product

The Kronecker product is a matrix operation that takes two matrices of arbitrary

size and outputs a block matrix.

Definition 5.2.5. Given A = {aij}, an m × n matrix and B = {brs}, a p × q matrix. The

Kronecker product of A and B, denoted by A⊗B is an mp× nq matrix,

A⊗B =


a11B · · · a1nB

... . . . ...

am1B · · · amnB



=


a11b11 · · · a1nb1q

... . . . ...

am1bp1 · · · amnbpq

 .

The Kronecker product can be used to generate a higher-dimensional bent functions

from a base bent function.

Theorem 5.2.6. [67] Let a 4k-dimensional column vector x represent the truth table of a

bent function with k = 1, 2, . . .. Then,

z = x⊗ x

is a bent function expressed in a 16k2-dimensional column vector.

In another example, the Kronecker product is a key concept to prove the following

theorem, which addresses a construction of bent function.

Theorem 5.2.7. [67] Let two Boolean functions f and g such that f : Fn2 −→ F2 and g :

Fm2 −→ F2. Then the Boolean function h : Fn+m
2 −→ F2, defined by h(z) = f(x) ⊕ g(y)

with z = x‖y is bent if and only if f and g are bent.
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This theorem shows how a Boolean function of 2k variables, f(x) = x1x2⊕x3x4⊕

· · · ⊕ x2k−1x2k with k ≥ 1 is bent. The direct-sum method is a key component of various

bent function constructions including the constructions of Maiorana and McFarland [68],

[69], and Carlet [70], [71], and Canteaut et al. [30].

5.2.3. Affine Operations

We can integrate various operations that are conceptually linear to a construction

method to have significant effects. For example, linear transformation of variables, com-

plemetation of domain or function values, and adding polynomials are frequently used for

construction and analysis.

Example 5.2.8. If a Boolean function f is bent, then f ⊕ l is bent for any affine function

l [4, p. 83]. Let A be an n × n invertible matrix over F2 and v ∈ Fn2 . If a Boolean

function f of n variables is bent, then g(x) = f(Ax ⊕ v) is bent [4, p. 84]. Therefore,

h(x) = f(Ax⊕ v)⊕ l is bent as well.

5.3. TWO CONSTRUCTIONS TO ADDRESS SECURITY AND SPEED

We introduce two constructions [27] based on functions fi ∈ Bn−2 where i =

1, 2, . . ..

Construction 1.

For {i, j} = {1, 2}, we define the functions on Fn2 :

fi ‖ fj ‖ fi ‖ f̄j; fi ‖ fj ‖ f̄i ‖ fj; fi ‖ f̄j ‖ fi ‖ fj; f̄i ‖ fj ‖ fi ‖ fj;

fi ‖ fj ‖ fj ‖ f̄i; fi ‖ fj ‖ f̄j ‖ fi; fi ‖ f̄j ‖ fj ‖ fi; f̄i ‖ fj ‖ fj ‖ fi.

Construction 2.
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For {i, j} = {1, 2}, we define the functions on Fn2 :

fi ‖ fj ‖ f̄i ‖ f̄j; fi ‖ fj ‖ f̄j ‖ f̄i; f̄i ‖ f̄j ‖ fi ‖ fj; f̄i ‖ f̄j ‖ fj ‖ fi.

We observe that some functions in the constructions are affine equivalent to each

other. For example, given two functions u and v of n− 1 variables with x ∈ Fn2 ,

(u ‖ v̄)(x) = (xn ⊕ 1)u⊕ xn(v ⊕ 1)

= (xn ⊕ 1)u⊕ xnv ⊕ xn

= (u ‖ v)(x)⊕ xn

by Definition 3.2.1. Therefore,

u ‖ v ∼ u ‖ v̄.

Also,

(u ‖ v)(x) = ((v||u)(x⊕ (0, . . . , 0, 1))

due to the lexicographical order of domain. So we have

u ‖ v ∼ v ‖ u,

where ∼ signifies affine equivalence.
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By setting u = fi ‖ fj and v = fi ‖ f̄j , it is clear that u ‖ v = fi ‖ fj ‖ fi ‖ f̄j
is affine equivalent to u ‖ v̄ = fi ‖ fj ‖ f̄i ‖ fj . By similar arguments, we have for

Construction 1,

fi ‖ fj ‖ fi ‖ f̄j ∼



fi ‖ fj ‖ f̄i ‖ fj

fi ‖ f̄j ‖ fi ‖ fj

f̄i ‖ fj ‖ fi ‖ fj

and

fi ‖ fj ‖ fj ‖ f̄i ∼



fi ‖ fj ‖ f̄j ‖ fi

fi ‖ f̄j ‖ fj ‖ fi

f̄i ‖ fj ‖ fj ‖ fi

.

For Construction 2,

fi ‖ fj ‖ f̄i ‖ f̄j = f̄i ‖ f̄j ‖ fi ‖ fj ⊕ 1

and
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fi ‖ fj ‖ f̄j ‖ f̄i = f̄i ‖ f̄j ‖ fj ‖ fi ⊕ 1,

Therefore, we have

fi ‖ fj ‖ f̄i ‖ f̄j ∼ f̄i ‖ f̄j ‖ fi ‖ fj

and

fi ‖ fj ‖ f̄j ‖ f̄i ∼ f̄i ‖ f̄j ‖ fj ‖ fi.

There have been some constructions which use some components of our construc-

tions. For example, the bentness, the resiliency, and the normality properties of concate-

nated bent functions were considered in [72, 73]. The normality of f1 ‖ f2 ‖ f2 ‖ f̄1

for arbitrary function fi with i = 1, 2 is mentioned in [74]. Our constructions address

the instance where fi’s are affine equivalent to each other, and we cover other configura-

tions. Moreover, we explore more than the normality of the functions. f ∈ Bn satisfies

the high degree product (HDP) of order n if, for any non-annihilating function g of degree

1 ≤ e ≤ dn/2e − 1, the degree d = deg(gf) satisfies e + d ≥ n [75]. In [75], Pasalic

introduced a concatenation of four functions which requires each function to have maxi-

mum algebraic immunity, to show that the notion of HDP can measure resistance to fast

algebraic attacks.

Remark 5.3.1. In [76], Wang et al. demonstrated that the construction based on a four-

function concatenation in [75] does not always produce HDP function.

106



5.4. CRYPTOGRAPHIC PROPERTIES OF THE TWO CONSTRUCTIONS

We start with algebraic immunity and nonlinearity. To set the stage for these prop-

erties, we take a look at the Walsh-Hadamard transform of the functions. The relationship

between Walsh-Hadamard transform and the function formed by concatenating two or four

functions of the same variables are well known. We generalize the relationship and present

the next lemma, which describes the Walsh-Hadamard coefficients of g (in some dimen-

sion) to the Walsh-Hadamard coefficients of its 2−k (k ≥ 1) concatenated parts.

Lemma 5.4.1. [27] If g(x, xn+1, . . . , xn+r) = f1(x)‖f2(x)‖ · · · ‖f2r(x) =
2r

‖
i=1

fi(x), then

Wg(u, un+1, . . . , un+r)

= Wf1(u) + (−1)un+1Wf2(u) + · · ·+ (−1)un+1+···+un+rWf2r
(u)

=
2r∑
k=1

(−1)a(k)·u′Wfk(u),

where r ∈ N, a(k) is the kth lexicographically ordered vector in Fr2, and u′ = (un+1, . . . , un+r).

Proof. We show our result by induction on r. If r = 1,

Wg(u, un+1) =
∑

(x,xn+1)∈Fn+1
2

(−1)g(x,xn+1)+u·x+un+1xn+1

=
∑
x∈Fn2

(−1)g1(x)+u·x + (−1)un+1

∑
x∈Fn2

(−1)g2(x)+u·x

= Wg1(u) + (−1)un+1Wg2(u).

For the induction hypothesis, we assume,
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Wg(u, un+1, . . . , un+r) =
2r∑
k=1

(−1)a(k)·u′Wfk(u),

for

g′′(x, xn+1, . . . , xn+r+1) = f1(x)‖f2(x)‖ · · · ‖f2r+1(x) = g‖g′ =
2r+1

‖
i=1

fi(x),

where g′ = f2r+1(x)‖f2r+2(x)‖ · · · ‖f2r+1(x).

Then, we have

Wg′′(u, un+1, . . . , un+r+1)

= Wg(u, un+1, . . . , un+r) + (−1)un+r+1Wg′(u, un+1, . . . , un+r)

= Wf1(u) + (−1)un+1Wf2(u) + · · ·+ (−1)un+1+···+un+r+1Wf2r+1 (u)

=
2r+1∑
k=1

(−1)a(k)·u′Wfk(u),

which shows our result.

The next lemma shows what happens to algebraic immunity when XORing two

functions.

Lemma 5.4.2. [77, Lemma 1] For any f ∈ Bn and any l ∈ An,

AI(f)− 1 ≤ AI(f ⊕ l) ≤ AI(f) + 1.

In general, for any f ∈ Bn and any function h ∈ Bn with deg(h) = k,
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AI(f)− k ≤ AI(f ⊕ h) ≤ AI(f) + k.

The next lemma shows how algebraic immunity behaves when concatenating two

functions.

Lemma 5.4.3. [77, Proposition 1] Let g1, g2 be two Boolean functions in the variables

x1, . . . , xn with AI(g1) = d1, AI(g2) = d2, and let g = (1 ⊕ xn+1)g1 ⊕ xn+1g2 ∈ Bn+1.

Then, the following hold:

If d1 6= d2, then AI(g) = min{d1, d2}+ 1.

If d1 = d2(=: d), then d ≤ AI(g) ≤ d + 1. Further, AI(g) = d if and only if

there exists f1, f2 ∈ Bn of algebraic degrees d that either both annihilate g1, g2, or both

annihilate ḡ1, ḡ2, and deg(f1 ⊕ f2) ≤ d− 1.

For our next result, we let f1 ∈ Bn−2 in Construction 1 and 2 be any balanced

function and f2(x) = f1(Ax⊕ b), where A is an (n− 2) by (n− 2) invertible matrix over

F2 and b is an (n− 2) dimensional vector over F2. We note that, since f1 and f2 are affine

equivalent, we have deg(f1) = deg(f2), AI(f1) = AI(f2) and nl(f1) = nl(f2).

Theorem 5.4.4. [27] Let f ∈ Bn be given by Constructions 1 or 2. f1, f2 ∈ Bn−2 are

nonconstant and affine equivalent. Then, f is balanced.

deg(f) = max{deg(f1), deg(f1 ⊕ f2) + 1},

and

AI(f) ≥ min{AI(f1||f2), AI(f1||f̄2)} ≥ AI(f1).

Moreover,

nl(f) = 2n−2 + 2nl(f1),

for functions in Construction 1, and
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nl(f) = 4nl(f1),

for functions in Construction 2.

Proof. We prove the result for Constuction 1 for two cases, since the others are similar.

First, let f = f1||f2||f1||f̄2 . We observe that

f = (xn ⊕ 1)(f1 ‖ f2)⊕ xn(f1 ‖ f̄2)

= (xn ⊕ 1)((xn−1 ⊕ 1)f1 ⊕ xn−1f2)

⊕xn((xn−1 ⊕ 1)f1 ⊕ xn−1(f2 ⊕ 1))

= xn−1f1 ⊕ f1 ⊕ xn−1f2 ⊕ xnxn−1

= (f1 ‖ f2)⊕ xnxn−1.

Since f1 and f2 are nonconstant,

deg(f) = deg(f1||f2)

= max{deg(f1), deg(f1 ⊕ f2) + 1}.

Since

(f1||f̄2)(xn−1) = (f1||f2)(xn−1)⊕ xn−1,
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where xn−1 = (x1, x2, . . . , xn−1), by Lemma 5.4.2,

|AI(f1||f2)− AI(f1||f̄2)| ≤ 1.

So, we check two possibilities.

If AI(f1||f2) = AI(f1||f̄2), by Lemma 5.4.3

AI(f) ≥ AI(f1||f2) ≥ AI(f1).

If |AI(f1||f2)− AI(f1||f̄2)| = 1, then Lemma 5.4.3 shows that

AI(f) = min{d, d+ 1}+ 1 = d+ 1,

where min{AI(f1||f2), AI(f1||f̄2)} = d.

Second, let f = f1||f2||f2||f̄1. Then,

f = (xn ⊕ 1)(f1 ‖ f2)⊕ xn(f2 ‖ f̄1)

= xn−1f1 ⊕ f1 ⊕ xn−1f2 ⊕ xnf1 ⊕ xnf2 ⊕ xnxn−1

= (f1 ‖ f2)⊕ xn(f1 ⊕ f2 ⊕ xn−1).

So, we have

deg(f) = deg(f1||f2)

= max{deg(f1), deg(f1 ⊕ f2) + 1}.
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The algebraic immunity computation does not change in this case.

To find the nonlinearity, we consider only f = f1||f2||f1||f̄2 of Construction1 since

the proofs for the other cases are similar. Using Lemma 5.4.1, we obtain

Wf (u, un−1, un) = Wf1(u) + (−1)un−1Wf2(u)

+(−1)unWf1(u) + (−1)un−1+unWf̄2
(u)

= (1 + (−1)un)Wf1(u) + (−1)un−1 (1− (−1)un)Wf2(u).

Thus, Wf (u, un−1, 0) = 2Wf1(u) and Wf (u, un−1, 1) = 2(−1)un−1Wf2(u). It follows that

max
(u,un−1,un)∈Fn2

|Wf (u, un−1, un)| = 2 max
u∈Fn−2

2

|Wf1(u)| = 2n−1 − 4nl(f1)).

Therefore,

nl(f) = 2n−2 + 2nl(f1).

Next, we take two cases of Construction 2, as they are slightly different. The other

cases are similar to these.

Case 1. Let f = f1||f2||f̄1||f̄2. As above,

Wf (u, un−1, un) = Wf1(u) + (−1)un−1Wf2(u)

+(−1)unWf̄1
(u) + (−1)un−1+unWf̄2

(u)

= (1− (−1)un)Wf1(u) + (−1)un−1 (1− (−1)un)Wf2(u)

= (1− (−1)un) (Wf1(u) + (−1)un−1Wf2(u)) .

112



Case 2. Let f = f1||f2||f̄2||f̄1. Then,

Wf (u, un−1, un) = Wf1(u) + (−1)un−1Wf2(u)

+(−1)unWf̄2
(u) + (−1)un−1+unWf̄1

(u)

=
(
1− (−1)un−1+un

)
Wf1(u) + (−1)un−1

(
1− (−1)un−1+un

)
Wf2(u)

=
(
1− (−1)un+un−1

)
(Wf1(u) + (−1)un−1Wf2(u)) .

Regardless of the case, we see that for Construction 2, we have

max
(u,un−1,un)∈Fn2

|Wf (u, un−1, un)| = 4 max
u∈Fn−2

2

|Wf1(u)|

= 2n − 8nl(f1)),

which renders

nl(f) = 4nl(f1).

We note that the nonlinearity in Construction 1 is much better than that of Con-

struction 2 with n ≥ 3. It is attributed to the following reasoning. Since f1 ∈ Bn−2,

nl(f1) ≤ 2n−3 − 2n/2−2 < 2n−3.

Therefore,

nl(f) = 2n−2 + 2nl(f1) > 4nl(f1).

As for the algebraic immunity, in most cases, deg(f1(xA ⊕ b) ⊕ f1) = deg(f1). That is,

deg(f) = deg(f1) + 1. By Lemma 5.4.3, it is usually the case that
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AI(f1||f2) = AI(f1) + 1.

That is,

AI(f) ≥ AI(f1) + 1.

Also, we note nl(f) is much better than nl(f1). Additionally, the fast correlation attack on

f has an on-line complexity proportional to
(

1
ε

)2 where ε(f) = nl(f)
2n
− 1

2
is the the bias of

nonlinearity [20]. The bias for Construction 1 is

ε(f) =
nl(f)

2n
− 1

2

=
1

4
− nl(f1)

2n−1
− 1

2

=
1

2

(
nl(f1)

2n−2
− 1

2

)
.

This shows our constructions improve against correlation attacks when compared to the

base function.

Proposition 5.4.5. [75, Proposition 1] Let f = f1 ‖ f2 ‖ f3 ‖ f4 be an element of Bn+2

where n is even. Let fi ∈ Bn with i = 1, . . . , 4 have maximum algebraic immunity, that is

AI(fi) =
⌈n

2

⌉
. Let f1 be such that for any function g of deg(g) = e, e ∈

[
1,
⌈n

2

⌉
− 1
]
,

we have deg(f1g) = d ≥ AI(f1), and e+ d ≥ n. Also let f1 = f3 ⊕ 1. Then

AI(f) =
⌈n

2

⌉
+ 1,

which shows that f has maximum algebraic immunity.

114



Using Proposition 5.4.5, we can further infer that if we take f1, f2 ∈ Bn with

n even of maximum AI , with the property that for any function g of algebraic degree

1 ≤ e ≤
⌈n

2

⌉
− 1, we have deg(f1g) = d ≥ AI(f1) and e+ d ≥ n, then f = f1||f2||f̄1||f2

has maximum AI . The Boolean functions with maximum algebraic immunity are called

perfect algebraic immune (PAI) [78]. Liu et al. introduced the notion of PAI and showed

that if f1 is a balanced PAI, then n = 2k + 1 for some k; if f1 is unbalanced, then n = 2k,

for some k [78, Theorem 7]. Next, we present the results related to normality of our

constructions.

Theorem 5.4.6. [27] Let fi, fj ∈ Bn−2. If fi or fj , whichever does not have its comple-

mentation in Construction 1, is k-normal, then the functions f of Construction 1 are at

least (k + 1)-normal.

Proof. Due to the affine equivalence to fi, fj is k-normal. If fi is invariant, say 0 on a

k-dimensional flat, then f̄i is invariant with 1 on the same flat, which shows that f̄i is k-

normal. We prove for the case f = fi‖fj‖fi‖f̄j only, since the others can be shown by

similar arguments. We show the existence of a (k + 1)-dimensional affine subspace where

f(x) is a constant. Let z1, . . . zk ∈ be k distinct, linearly independent vectors in Fn−2
2 ,

d = (d1, d2, . . . , dn−2) be a vector in Fn−2
2 , and ai ∈ F2 be for 1 ≤ i ≤ k. We define a k-

dimensional flat G = {x ∈ Fn−2
2 | x = a1z1 +a2z2 + · · ·+akzk +d, ai = F2, 1 ≤ i ≤ k}

such that fi|G = 0. In construction of f , we integrate two variables, xn−1 and xn into the

domain of fi, and we can construct a (k + 1)-dimensional flat in the following way. Let

zl = (zl1, zl2, . . . , zl(n−2)) where 1 ≤ l ≤ k. We set

z′l = (zl1, zl2, . . . , zl(n−2), 0, 0),

z′k+1 = (0, . . . , 0, 1),

and

d′ = (d1, d2, . . . , dn−2, 0, 0)
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where z′k+1, d
′ ∈ Fn2 . Then

G′ = {x′ ∈ Fn2 | x′ = a1z
′
1 + a2z

′
2 + · · ·+ ak+1z

′
k+1 + d′, ai = F2, 1 ≤ i ≤ k + 1}.

If a vector x′ ∈ G′ with ak+1 = 0, then f follows the first fi in the construction. If a vector

x′ ∈ G′ with ak+1 = 1, then f follows the third fi in the construction. Therefore, G′ is a

(k + 1)-dimensional flat such that f |G′ = 0.

Generally, it is difficult to establish a proper limit to the normality of a function. Let

fi or fj , whichever does not have its complementation in Construction 1, be k-normal but

not k+1-normal, and we show that the function f of Construction 1 cannot have a constant

function value on the k + 2-dimensional flat H = {a1ei1 ⊕ · · · ⊕ ak+2eik+2
⊕ d}, where

d = (y1, . . . yn) is a fixed vector in Fn2 and eim = (x1, . . . , xn) is an elementary vector such

that xj = 1 if and only if j = im with 1 ≤ im ≤ n. We assume f = fi‖fj‖fi‖f̄j since the

others can be shown by similar arguments. Let us also assume that H exists. We observe

that yim is irrelevant (whether it is 0 or 1) due to eim , so we set d with yi1 = . . . = yik+2
= 0.

To illustrate better, we rewrite the restriction of our function to H as follows:

f(x)|H = (x̄n−1fi ⊕ xn−1fj)‖(x̄n−1fi ⊕ xn−1f̄j) |H

= x̄n(x̄n−1fi ⊕ xn−1fj)⊕ xn(x̄n−1fi ⊕ xn−1f̄j) |H

= x̄n−1(x̄nfi ⊕ xnfi)⊕ xn−1(x̄nfj ⊕ xnf̄j) |H

= fi ⊕ xn−1fi ⊕ xn−1fj ⊕ xn−1xn |H .

Without loss of generality, we assume f(x) = 0 for all x = (x1, . . . , xn) ∈ H , and

we examine the following cases, depending upon the values of xn−1 and xn.
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Case 1: n − 1, n /∈ {i1, i2, . . . , ik+2}. Then xn−1 = dn−1, and dn = xn. We observe that

for all possible values for xn−1 and xn, f |H is one of the functions, fi, fj , or f̄j . Since each

function is only k-normal, there exists at least one x ∈H such that f(x)|H = 1, which is a

contradiction.

Case 2: n − 1 /∈ {i1, i2, . . . , ik+2} and xn ∈ {i1, i2, . . . , ik+2}. Then xn−1 = dn−1. If

xn−1 = 0, then regardless of the value of xn, f |H follows the function, fi. We note that we

can only increase the normality to k + 1 using xn, since fi is k-normal. Therefore, there

exists at least one x ∈H such that f(x)|H = 1, which is a contradiction. If xn−1 = 1, f |H
follows the function, fj with xn = 0 or f̄j with xn = 1. Clearly, f |H is at most k-normal,

since f̄j = fj ⊕ 1. So, there exists at least one x ∈H such that f(x)|H = 1, which is a

contradiction.

Case 3: n /∈ {i1, i2, . . . , ik+2} and xn−1 ∈ {i1, i2, . . . , ik+2}. Then dn = xn. If xn = 0,

then f |H follows the function, fi‖fj . Also, if xn = 1, then f |H follows the function,

fi‖f̄j . In both instances, we can only increase the normality to k + 1, since fi, fj and f̄j

are k-normal.

Case 4: xn−1, xn ∈ {i1, i2, . . . , ik+2}. In this case f |H follows fi‖fj‖fi‖f̄j |H , and any two

vectors x′, x′′ ∈ H in the forms of x′ = (a1, . . . , an−2, 1, 0) and x′′ = (b1, . . . , bn−2, 1, 1)

with ai, bi ∈ F2, 1 ≤ i ≤ n − 2 have opposite function values. Therefore, we have a

contradiction.

Under what conditions the functions of Construction 1 is k + 2-normal remains an

open problem. Using a similar approach, we can show a similar result for the functions of

Construction 2.

Theorem 5.4.7. [27] If fi is k-normal, then the functions f of Construction 2 are k or

k + 1-normal.

Proof. We prove for f = fi‖fj‖f̄i‖f̄j since the proofs for other cases are similar. Since fi

is k-normal, f is at least k-normal. Also we observe that if fi = fj , then we have

f = fi‖fi‖f̄i‖f̄i.
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Using the same technique in Theorem 5.4.6, we show the existence of a (k + 1)-

dimensional affine subspace where f(x) is a constant. Let z1, . . . zk ∈ be k distinct, linearly

independent vectors, d = (d1, d2, . . . , dn−2) be a vector in Fn−2
2 , and ai ∈ F2 be for 1 ≤ i ≤

k. We define a k-dimensional flatG = {x ∈ Fn−2
2 | x = a1z1 +a2z2 + · · ·+akzk+d, ai =

F2, 1 ≤ i ≤ k} such that fi|G = 0. In construction of f , we integrate two variables,

xn−1 and xn into the domain of fi, and we can construct a (k + 1)-dimensional flat in the

following way. Let zl = (zl1, zl2, . . . , zl(n−2)) where 1 ≤ l ≤ k. We set

z′l = (zl1, zl2, . . . , zl(n−2), 0, 0),

z′k+1 = (0, . . . , 1, 0),

and

d′ = (d1, d2, . . . , dn−2, 0, 0)

where z′k+1, d
′ ∈ Fn2 . Then

G′ = {x′ ∈ Fn2 | x′ = a1z
′
1 + a2z

′
2 + · · ·+ ak+1z

′
k+1 + d′, ai = F2, 1 ≤ i ≤ k + 1}.

If a vector x′ ∈ G′ with ak+1 = 0, then f follows the first fi in the construction. If a vector

x′ ∈ G′ with ak+1 = 1, then f follows the second fi in the construction. Therefore, G′ is a

k + 1-dimensional flat such that f |G′ = 0. Therefore, the theorem holds.

We also present a similar result on the normality of the functions of Construction 2.

Let fi in Construction 2 be k-normal but not k + 1-normal, and we show that the function

f of Construction 2 cannot have a constant function value on the k + 2-dimensional flat

H = {a1ei1 ⊕ · · · ⊕ ak+2eik+2
⊕ d}, where d = (y1, . . . yn) is a fixed vector in Fn2 and

eim = (x1, . . . , xn) is an elementary vector such that xj = 1 if and only if j = im with

1 ≤ im ≤ n. We assume f = fi‖fj‖f̄i‖f̄j , since the others can be shown by similar
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arguments. Let us also assume that H exists. We observe that yim is irrelevant (whether it

is 0 or 1) due to eim , so we set d with yi1 = . . . = yik+2
= 0. To illustrate better, we rewrite

the restriction of our function to H as follows:

f(x) |H = (x̄n−1fi ⊕ xn−1fj)‖(x̄n−1f̄i ⊕ xn−1f̄j) |H

= x̄n(x̄n−1fi ⊕ xn−1fj)⊕ xn(x̄n−1f̄i ⊕ xn−1f̄j) |H

= x̄n−1(x̄nfi ⊕ xnfi)⊕ xn−1(x̄nfj ⊕ xnfj)⊕ xn |H

= fi ⊕ xn−1fi ⊕ xn−1fj ⊕ xn |H .

Without loss of generality, we assume f(x) = 0 for all x = (x1, . . . , xn) ∈ H , and

we examine the following cases, depending upon the variables, xn−1 and xn.

Case 1: n − 1, n /∈ {i1, i2, . . . , ik+2}. Then xn−1 = dn−1, and dn = xn. We observe that,

for all possible values for xn−1 and xn, f |H follows one of the functions, fi, f̄i, fj , or f̄j .

Since each function is only k-normal, there exists at least one x ∈ H with f(x) = 1, a

contradiction. We note that the other instances where xn−1 = yim or xn = yim are covered

by the other cases.

Case 2: n − 1 /∈ {i1, i2, . . . , ik+2} and xn ∈ {i1, i2, . . . , ik+2}. Then xn−1 = dn−1. If

xn−1 = 0, f |H follows the function, fi or f̄i. We know each function is k-normal. Since fi

and f̄i have opposite function values in H , there exists at least one x ∈ H with f(x) = 1,

a contradiction. If xn−1 = 1, f |H follows fj , or f̄j , the same justification applies, and we

have a contradiction.

Case 3: n /∈ {i1, i2, . . . , ik+2} and xn−1 ∈ {i1, i2, . . . , ik+2}. Then dn = xn. If xn = 0,

then f |H follows the function, fi‖fj . If xn = 1, then f |H again follows the function, f̄i‖f̄j .

In either case, we can only have a k + 1-normal function, which is a contradiction.
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Case 4: xn−1, xn ∈ {i1, i2, . . . , ik+2}. In this case f |H follows f = fi‖fi‖f̄i‖f̄i. and any

two vectors x′, x′′ ∈ H in the forms of x′ = (a1, . . . , an−2, 0, 0) and x′′ = (b1, . . . , bn−2, 0, 1)

with ai, bi ∈ F2, 1 ≤ i ≤ n − 2 have opposite function values. Therefore, we have a con-

tradiction.

Remark 5.4.8. References [73], and [74] contain the constructions of normal, or non-

normal functions based upon some of the functions of Construction 1, namely f1||f2||f2||f̄1,

where fi are bent or have some normality properties.

Finally, we investigate the propagation property of our construction.

Theorem 5.4.9. [27] If the base functions f1 and f2 in Construction 1 satisfy the strict

avalanche criterion, then f satisfies the strict avalanche criterion.

Proof. We recall that we add two variables xn−1 and xn when we concatenate the functions.

For every vector y ∈ Fn2 , write y = (yn−2, yn−1, yn) with yn−2 ∈ Fn−2
2 . We shall show

the claim for f = f1||f2||f1||f̄2, as all the other possibilities are similar. To apply Lemma

2.3.9, we check f ′ = f(x) ⊕ f(x ⊕ a) where a ∈ Fn2 of weight wt(a) = 1. We consider

three possible cases.

Case 1. Let a = (0, . . . , 0, 1). Then,

f(x)⊕ f(x⊕ a) = (f1||f2)(xn−2, xn−1)x̄n ⊕ (f1||f̄2)(xn−2, xn−1)xn

⊕(f1||f2)(xn−2, xn−1)xn ⊕ (f1||f̄2)(xn−2, xn−1)x̄n

= (f1||f2)(xn−2, xn−1)⊕ (f1||f̄2)(xn−2, xn−1)

= 02n−2||12n−2 ‖ 02n−2||12n−2 ,

Clearly, it is a balanced function.
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Case 2. Take a = (0, . . . , 1, 0). Then

f(x)⊕ f(x⊕ a)

= (f1||f2)(xn−2, xn−1)x̄n ⊕ (f1||f̄2)(xn−2, xn−1)xn

⊕(f1||f2)(xn−2, x̄n−1)x̄n ⊕ (f1||f̄2)(xn−2, x̄n−1)xn

= f1(xn−2)x̄n−1x̄n ⊕ f2(xn−2)xn−1x̄n ⊕ f1(xn−2)x̄n−1xn ⊕ f̄2(xn−2)xn−1xn

⊕f1(xn−2)xn−1x̄n ⊕ f2(xn−2)x̄n−1x̄n ⊕ f1(xn−2)xn−1xn ⊕ f̄2(xn−2)x̄n−1xn

= f1(xn−2)x̄n ⊕ f2(xn−2)x̄n ⊕ f1(xn−2)xn ⊕ f̄2(xn−2)xn

= f1(xn−2)⊕ f2(xn−2)⊕ xn.

which is balanced regardless of f1 ⊕ f2 is balanced or not.
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Case 3. Take a = (a′, 0, 0), with wt(a′) = 1. Write xa = xn−2 ⊕ a′. Then,

f(x)⊕ f(x⊕ a)

= (f1||f2)(xn−2, xn−1)x̄n ⊕ (f1||f̄2)(xn−2, xn−1)xn

⊕(f1||f2)(xa, xn−1)x̄n ⊕ (f1||f̄2)(xa, xn−1)xn

= f1(xn−2)x̄n−1x̄n ⊕ f2(xn−2)xn−1x̄n ⊕ f1(xn−2)x̄n−1xn ⊕ f̄2(xn−2)xn−1xn

⊕f1(xa)x̄n−1x̄n ⊕ f2(xa)xn−1x̄n ⊕ f1(xa)x̄n−1xn ⊕ f̄2(xa)xn−1xn

= (f1(xn−2)⊕ f1(xa))x̄n−1x̄n ⊕ (f2(xn−2)⊕ f2(xa))xn−1x̄n

⊕(f1(xn−2)⊕ f1(xa))x̄n−1xn ⊕ (f̄2(xn−2)⊕ f̄2(xa))xn−1xn

= (f1(xn−2)⊕ f1(xa))x̄n−1 ⊕ (f2(xn−2)⊕ f2(xa))xn−1,

which is balanced. Since f1 and f2 satisfy the strict avalanche criterion, both f1(xn−2) ⊕

f1(xn−2 ⊕ a′) and f2(xn−2)⊕ f2(xn−2 ⊕ a′) are balanced. We note that f ′ is balanced for

all the cases. Then, we have

Cf̂ (u) = 0,

for all u ∈ Fn2 with wt(u) = 1. By Lemma 2.3.9, we conclude that f satisfies the SAC.
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Theorem 5.4.10. [27] With {i, j} = {1, 2}, if fi, fj satisfy the strict avalanche criterion

and fi⊕fj is balanced, then the functions of Construction 2 of the form fi||fj||f̄j||f̄i, f̄i||f̄j||fj||fi
satisfy the strict avalanche criterion.

Proof. For every vector y ∈ Fn2 , we write y = (yn−2, yn−1, yn) with yn−2 ∈ Fn−2
2 . We

show the claim in the case f = f1||f2||f̄2||f̄1, as all the other possibilities are similar. Let

a ∈ Fn2 of weight wt(a) = 1. We consider these three cases.

Case 1. Take a = (0, . . . , 0, 1). Then

f(x)⊕ f(x⊕ a) = (f1||f2)(xn−2, xn−1)x̄n ⊕ (f̄2||f̄1)(xn−2, xn−1)xn

⊕(f1||f2)(xn−2, xn−1)xn ⊕ (f̄2||f̄1)(xn−2, xn−1)x̄n

= (f1||f2)(xn−2, xn−1)⊕ (f̄2||f̄1)(xn−2, xn−1)

= f1(xn−2)⊕ f2(xn−2)⊕ 1.

Since f1(xn−2)⊕ f2(xn−2) is balanced, its complement is balanced.
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Case 2. Take a = (0, . . . , 1, 0). Then

f(x)⊕ f(x⊕ a)

= (f1||f2)(xn−2, xn−1)x̄n ⊕ (f̄2||f̄1)(xn−2, xn−1)xn

⊕(f1||f2)(xn−2, x̄n−1)x̄n ⊕ (f̄2||f̄1)(xn−2, x̄n−1)xn

= f1(xn−2)x̄n−1x̄n ⊕ f2(xn−2)xn−1x̄n ⊕ f̄2(xn−2)x̄n−1xn ⊕ f̄1(xn−2)xn−1xn

⊕f1(xn−2)xn−1x̄n ⊕ f2(xn−2)x̄n−1x̄n ⊕ f̄2(xn−2)xn−1xn ⊕ f̄1(xn−2)x̄n−1xn

= (f1(xn−2)⊕ f2(xn−2))x̄n ⊕ (f1(xn−2)⊕ f2(xn−2))xn,

= f1(xn−2)⊕ f2(xn−2),

which is balanced.
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Case 3. Take a = (a′, 0, 0), with wt(a′) = 1. Write xa = xn−2 ⊕ a′. Then,

f(x)⊕ f(x⊕ a)

= (f1||f2)(xn−2, xn−1)x̄n ⊕ (f̄2||f̄1)(xn−2, xn−1)xn

⊕(f1||f2)(xa, xn−1)x̄n ⊕ (f̄2||f̄1)(xa, xn−1)xn

= f1(xn−2)x̄n−1x̄n ⊕ f2(xn−2)xn−1x̄n ⊕ f̄2(xn−2)x̄n−1xn ⊕ f̄1(xn−2)xn−1xn

⊕f1(xa)x̄n−1x̄n ⊕ f2(xa)xn−1x̄n ⊕ f̄2(xa)x̄n−1xn ⊕ f̄1(xa)xn−1xn

= (f1(xn−2)⊕ f1(xa))x̄n−1x̄n ⊕ (f2(xn−2)⊕ f2(xa))xn−1x̄n

⊕(f̄2(xn−2)⊕ f̄2(xa))x̄n−1xn ⊕ (f̄1(xn−2)⊕ f̄1(xa))xn−1xn

= (f1(xn−2)⊕ f1(xa))(1⊕ xn−1 ⊕ xn)⊕ (f2(xn−2)⊕ f2(xa))(xn−1 ⊕ xn)

= (f1(xn−2)⊕ f1(xa))‖(f2(xn−2)⊕ f2(xa))‖

(f2(xn−2)⊕ f2(xa))‖(f1(xn−2)⊕ f1(xa)).

Since f1 and f2 satisfy the strict avalanche criterion, both f1(xn−2)⊕f1(xa) and f2(xn−2)⊕

f2(xa) are balanced. Therefore, f in Case 3 is balanced. Since f ′ is balanced for all the

cases, we have
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Cf̂ (u) = 0,

for all u ∈ Fn2 with wt(u) = 1. By Lemma 2.3.9, we conclude that f satisfies the SAC.

126



6. AN APPLICATION OF THE TWO CONSTRUCTIONS

6.1. INTRODUCTION

In this chapter, we show an application of the construction methods presented in

the previous chapter. In 2002, Krause [79] introduced an attack against stream ciphers

based on the binary decision diagram (BDD). Several researchers have demonstrated the

effectiveness of BDD-based attacks, and it has been difficult for functions with conven-

tional cryptographic properties to counter BDD-based attacks. Various BDD-based attacks

are found in [79], [80], [81], [82], and [83]. One way to counter BDD-based attacks is to

integrate Boolean functions with robust BDDs [79]. There have been many constructions

of Boolean functions with high algebraic immunity [77], [84], [85], [86], [87], [88], [89],

[90], [91], [92], [93], [94], [95], [96], [97], [98], [99], but few took BDD-based attacks into

consideration. In [100] and [101], Bryant showed that the hidden weighted-bit function

(HWBF) has an exponential size of BDD regardless of variable order, and in [98], Wang

et al. extensively investigated the cryptographic properties of HWBF. In this chapter, we

briefly introduce the concept of the BDD and apply our construction methods from the

previous chapter to HWBF. This chapter is based on Chung, Stanica, Tan, and Wang [27].

6.2. BINARY DECISION DIAGRAM (BDD)

We mention briefly relevant findings from [102, pp. 202–280], which covers BDDs

extensively. Essentially, a BDD is a tree that represents a perspective on a Boolean func-

tion in which redundant nodes are removed. The BDD is an insightful way to represent a

Boolean function, since it shows how the Boolean function data is stored and handled in a

computer memory system [102, p. 202]. There are various BDD definitions in technical

literature. Here, we assume the BDD has ordered vertices or nodes from the lowest at the

top to the highest at the bottom, and is reduced as we apply the reduction steps explained

below. We illustrate the BDD using an example from [102, pp. 202–205]. Let a Boolean
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function, f , be described as in Table 6.1. A graphical way to represent the truth table f is

using a tree structure shown Figure 6.1. We then apply a reduction algorithm on the tree,

in which we remove nodes that represent a function also represented by another node in

the BDD. Then we connect from the first x2 to any 0 node and from the second x2 to any

1 node. We note that two middle x3 nodes have the same function values, so we combine

them along with the edges from x2 nodes, which results in a BDD representation of f in

Table 6.2. A computer memory system can store f in four different memory blocks repre-

senting the nodes, and each block points to other nodes as indicated by the BDD [102, p.

203]. The size of the BDD, denoted by BDD(f) is the number of vertices in a BDD.

x = x1x2x3 000 001 010 011 100 101 110 111
f(x) 0 0 0 1 0 1 1 1

Table 6.1: Truth Table of a Boolean Function f From [102, p. 205]

Figure 6.1: A Tree Representation of f

It is shown that every Boolean function has a unique BDD [102, p. 205]. The

following are some benefits of considering BDD in Boolean function analysis [102, p.

206].

1. From the structural point of view, we can evaluate f(x) in at most n steps by follow-

ing the edges from the root vertex.
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Figure 6.2: BDD Representation of f

2. We can effectively identify the lexicographically smallest x such that f(x) = 1 or 0

in at most n steps.

3. We can find all x ∈ Fn2 such that f(x) = 1 or 0 in O(BDD(f) · n) steps.

4. We can efficiently generate random solutions to the equation f(x) = 1 such that each

solution gets generated in an equal probability.

5. We can solve the linear Boolean programming problem: Find x ∈ Fn2 such that

u1x1 ⊕ u2x2 ⊕ · · · ⊕ unxn = 1,

subject to

f(x) = 1

with given constants (u1, u2, . . . , un) in O(n+BDD(f)) steps.

6.3. HIDDEN WEIGHTED-BIT FUNCTION (HWBF)

6.3.1. Definition of HWBF

In general, a HWBF hn takes x = (xn, xn−1, . . . , x1) as input and outputs xi , where

i = wt(x).

Definition 6.3.1. We define the HWBF of n variable, denoted by hn as
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hn(x) =


0, if wt(x) = 0

xwt(x), if wt(x) > 0

For example, we can evaluate h4(x4, x3, x2, x1) on F4
2 to obtain Table 6.2.

x4x3x2x1 h4(x4, x3, x2, x1)

0000 0
0001 1
0010 0
0011 1
0100 0
0101 0
0110 1
0111 1

x4x3x2x1 h4(x4, x3, x2, x1)

1000 0
1001 0
1010 1
1011 0
1100 0
1101 1
1110 1
1111 1

Table 6.2: A HWBF with n = 4

We observe that h4(0110) = 1 since wt(0110) = 2 (so the second element of 0110 which

is 1 is the function value). Table 6.3 has the list of HWBFs upto n = 8.

One of the interesting characteristics of HWBFs is that they have a very large num-

ber of nodes when represented by a BDD [79]. Specifically,

BDD(hn) = cχn +O(n2),

where χ ≈ 1.3247 is the positive root of

χ3 = χ+ 1

and c ≈ 10.75115 [102, p. 206].

6.3.2. Affine Structure within HWBF

In order to implement our construction methods with HWBFs, we need a class of

functions affine equivalent to the HWBFs. It turned out that a HWBF hn is, in fact, a con-

catenation of hn−1 and one of it affine-equivalent functions. Let φ be the left-rotation sym-

metric operation on vectors of arbitrary dimension, say φ(xn, xn−1, . . . , x1) = (x1, . . . , x3, x2).
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n HWBF of n Variable
1 01
2 0101
3 01010011
4 0101001100100111
5 01010011001001110010011000011111

6
01010011001001110010011000011111
00100110000111100000100101111111

7

01010011001001110010011000011111
00100110000111100000100101111111
00100110000111100000100101111110
00001000011010010001011111111111

8

01010011001001110010011000011111
00100110000111100000100101111111
00100110000111100000100101111110
00001000011010010001011111111111
00100110000111100000100101111110
00001000011010010001011111111110
00001000011010000001011011101001
00000001100101110111111111111111

Table 6.3: Hidden Weighted-Bit Functions

In [98], Wang et al. showed that the HWBF is a concatenation which can be iterated, as

shown in the next formula,

hn(x1,x, xn−1, xn) = hn−1(x1,x, xn−1)||(hn−1 ◦ φ)(x1,x, xn−1)

=hn−2(x1,x)||(hn−2 ◦ φ)(x1,x)||hn−2(x, xn−1)||(hn−2 ◦ φ)(x, xn−1)

= · · ·

(6.1)

where x = (x2, . . . , xn−2) ∈ Fn−2
2 . Noting this phenomenon, we define the function that

describes the latter half of the HWBF.
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Definition 6.3.2. Given the HWBF hn+1, the latter half function of hn+1, denoted by h′n is

h′n(x) =


1 if wt(x) = n

xwt(x)+1 if 0 ≤ wt(x) < n− 1.

On the other hand, we call the other half, the front half function, which is hn−1. So, we

have

hn+1 = hn‖h′n.

6.3.3. Cryptographic Properties of HWBF

Wang et al. extensively investigated the cryptographic properties of HWBFs in

[98]. We list their findings briefly. Given hn ∈ Bn where hn is an HWBF, the following

statements are true:

• hn is balanced.

• deg(hn) = n− 1 for n ≥ 3.

• hn satisfies SAC.

• Let u = (u1, u2, . . . , un) and wt(u) = 1. Then,

Wh(u) ≤ 4

(
n− 2⌈
n−2

2

⌉). (6.2)

• hn has nonlinearity

nl(hn) = 2n−1 − 2

(
n− 2⌈
n−2

2

⌉).
• hn has algebraic immunity

AI(hn) ≥
⌊n

3

⌋
+ 1. (6.3)
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• hn is a
⌊
n
2

⌋
-normal function, and h is not k-normal for any k >

⌊
n
2

⌋
.

Remark 6.3.3. We refer back to Table 6.3. We note the string of 1’s at the end of the truth

tables for each n. The pattern suggests that given n ≥ 5, we may have at least last n bits to

be 1. We ask if it is possible to exploit it. If an attack is possible, then what is the best way

to mitigate the risk?

6.4. CONSTRUCTION BASED ON HWBF

For our constructions, we let {fi, fj} = {hn−2, h
′
n−2}. Then, we have,

Construction 1.

fi ‖ fj ‖ fi ‖ f̄j; fi ‖ fj ‖ f̄i ‖ fj; fi ‖ f̄j ‖ fi ‖ fj; f̄i ‖ fj ‖ fi ‖ fj;

fi ‖ fj ‖ fj ‖ f̄i; fi ‖ fj ‖ f̄j ‖ fi; fi ‖ f̄j ‖ fj ‖ fi; f̄i ‖ fj ‖ fj ‖ fi.

Construction 2.

fi ‖ fj ‖ f̄i ‖ f̄j; fi ‖ fj ‖ f̄j ‖ f̄i; f̄i ‖ f̄j ‖ fi ‖ fj; f̄i ‖ f̄j ‖ fj ‖ fi.

Theorem 6.4.1. [27] Let n ≥ 4 and f1||f2 = hn−2 ‖ h′n−2 = hn−1, the (n− 1)- variables

HWBF. Then, all of the functions f from Construction 1 are balanced of degree max{n −

2, 2}, have nonlinearity

nl(f) = 2n−1 − 4

(
n− 4

d(n− 4)/2e

)
,

and have algebraic immunity
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AI(f) ≥
⌊
n+ 2

3

⌋
.

Proof. Clearly, all functions in Construction 1 are balanced since hn−2 and h′n−2 are bal-

anced. Furthermore, for any concatenation g1||g2 ∈ Bn where g1, g2 ∈ Bn−1,

deg(g1||g2) = max{deg(g1), deg(g1 ⊕ g2) + 1}

since

g1||g2 = (xn ⊕ 1)g1 ⊕ xng2

= xn(g1 ⊕ g2)⊕ g1.

Thus,

deg(f1||f2||f1||f̄2) = max{deg(f1||f2), deg((f1||f2)⊕ (f1||f̄2)) + 1}

= max{n− 2, deg(02n−212n−2) + 1}

= max{n− 2, 2},

where we write 0s, or 1s, for a truth table with the corresponding bit repeated s times.

Next, we do the computation for only one case. The others are similar. Let f =

f1||f2||f1||f̄2. We show that

max |Wf (w)| = 8

(
n− 4

dn−4
2
e

)
.
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We use Lemma 5.4.1, with g1 = hn−1 = f1||f2, g2 = f1||f̄2, f1 = hn−2, and

f2 = h′n−2. As in the proof of Theorem 5.4.4, we have

Wf (u, un−1, un) = (1 + (−1)un)Wf1(u) + (−1)un−1 (1− (−1)un)Wf2(u)

where u ∈ Fn−2
2 .

Thus,

Wf (u, un−1, 0) = 2Wf1(u)

and

Wf (u, un−1, 1) = 2(−1)un−1Wf2(u).

Since f1(u) = hn−2(u) and f2(u) = h′n−2(u) and max
u∈Fn−2

2

|Whn(u)| = 4
(
n−4
dn−4

2
e

)
by

Equation 6.2, it follows that

max
(u,un−1,un)∈Fn2

|Wf (u, un−1, un)|

= 2 max

{
max

u∈Fn−2
2

|Whn−2(u)|, max
u∈Fn−2

2

|Whn−2(φ(u))|

}
= 8

(
n− 4

dn−4
2
e

)
.

By Theorem 2.3.4, the nonlinearity of the functions in Construction 1 is

nl(f) = 2n−1 − 4

(
n− 4

dn−4
2
e

)
.

We now deal with the computation of the algebraic immunity for the considered

functions. By Theorem 4 of [98], let

AI(hn) = dn ≥
⌊n

3

⌋
+ 1.

135



Since hn ∼ h′n, we can construct an annihilator of h′n by the same affine transformation

between hn and h′n.

AI(hn) = AI(h′n).

By the definition of algebraic immunity,

AI(g) = AI(ḡ)

for any Boolean function g, and also,

AI(fi||fj) = AI(fj||fi),

and by Lemma 5.4.3,

AI(fi||f̄j) = AI(f̄i||fj),

for {i, j} = {1, 2}.

So without loss of generality, we will only consider the case of f = f1||f2||f1||f̄2.

Let g = g1||g2||k1||k2 6= 0 be a nonzero annihilator of f . Thus, g1, k1 are both annihila-

tors of f1; and, g2, respectively, k2 are annihilators of f2, respectively, f̄2 such that each

annihilator is a nonzero function.

First, since g1||g2 is an annihilator of f1||f2 = hn−1, it follows that deg(g1||g2) = 0,

if both g1 = g2 = 0, or deg(g1||g2) ≥ dn−1. Also, we observe that deg(g1 ⊕ k1) is either

0, if g1 = k1 = 0 or g1 = k1 6= 0. Otherwise, deg(g1 ⊕ k1) ≥ dn−1, since g1 ⊕ k1 is an

annihilator of f1. Now, the degree of the concatenation g = g1||g2||k1||k2 is

deg(g) = max{deg(g1||g2), deg((g1 ⊕ k1)||(g2 ⊕ k2)) + 1}.
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Next, we analyze the components of the set above. We see that

deg(g1||g2) = max{deg(g1), deg(g1 ⊕ g2) + 1},

and

deg((g1 ⊕ k1)||(g2 ⊕ k2)) = max{deg(g1 ⊕ k1), deg(g1 ⊕ g2 ⊕ k1 ⊕ k2) + 1}.

If we minimize max{deg(g1⊕ k1), deg(g1⊕ g2⊕ k1⊕ k2)⊕ 1}, we have the worst

case when g1 = k1 and g2 = k2. Then,

deg(g) = max{deg(g1||g2), 1} ≥
⌊
n− 1

3

⌋
+ 1 =

⌊
n+ 2

3

⌋
by Equation 6.3.

Theorem 6.4.2. [27] Let n ≥ 3 and f1||f2 = hn−1, the (n− 1)-variables HWBF. All of the

functions f from Construction 2 are balanced, have degree n− 2, have nonlinearity

nl(f) = 2n−1 − 4

(
n− 3

d(n− 3)/2e

)
,

have algebraic immunity

AI(f) ≥
⌊
n+ 2

3

⌋
,

and have the resiliency of order 1.

Proof. The functions in Construction 2 are balanced regardless of the balancedness of f1

and f2 and their complements. We will consider only some cases, since the others follow

similarly. If there is a noteworthy difference, we will point it out as necessary. Let f =

f1||f2||f̄1||f̄2. Clearly,

137



deg(f1||f2||f̄1||f̄2) = max{deg(f1||f2), deg((f1||f2)⊕ (f̄1||f̄2)) + 1}

= max{n− 2, deg(02n−1) + 1}

= max{n− 2, 1}.

= n− 2

for n ≥ 3. For the other possibilities, if f = f1||f2||f̄2||f̄1,

deg(f1||f2||f̄2||f̄1) = max{deg(f1||f2), deg((f1||f2)⊕ (f̄2||f̄1)) + 1}

= max{n− 2, deg((f1 ⊕ f̄2)||(f2 ⊕ f̄1)) + 1}

= max{n− 2, deg(f1 ⊕ f̄2) + 1}

= max{n− 2, n− 2}

= n− 2.
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Next, by Lemma 5.4.1 with g1 = hn−1 = f1||f2, g2 = f̄1||f̄2, f1 = hn−2, and

f2 = h′n−2, as in Theorem 5.4.4 we have

Wf (u, un−1, un) = (1− (−1)un)(Wf1(u) + (−1)un−1Wf2(u))

= (1− (−1)un)Whn−1(u, un−1),

where u ∈ Fn−2
2 . We now get

max
(u,un−1,un)∈Fn2

|Wf (u, un−1, un)| = 8

(
n− 3

dn−3
2
e

)

by Equation 6.2. Therefore, we have

nl(f) = 2n−1 − 4

(
n− 3

dn−3
2
e

)
by Theorem 2.3.4.

To show resilience of order 1, we will prove that the functions in Construction

2 are correlation immune of order 1 since the function is already balanced. The case

of f1||f2||f̄1||f̄2, or f̄1||f̄2||f1||f2, is straightforward. Let f = f1||f2||f̄2||f̄1. To show

correlation immunity of order 1, we need to show that Wf (w) = 0 for any vector w

with wt(w) = 1 by Lemma 2.3.15. It turns out that this will follow simply by us-

ing the balancedness of f1 and f2 and not the HWBF property. By Lemma 5.4.1, if

wt(u, un−1, un) = 1, we have

Wf (u, un−1, un) =
(
1− (−1)un−1+un

)
(Wf1(u) + (−1)un−1Wf2(u)).

Now, if wt(un−1, un) = 1, then u = 0. Since f1 and f2 are balanced,

Wf1(u) = Wf2(u) = 0.
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If wt(un−1, un) = 0, we have

1− (−1)un−1+un = 0.

Therefore,

Wf (u, un−1, un) = 0,

where wt(wt(u, un−1, un) = 1, and the functions have the resiliency of order 1.

The computation of the algebraic immunity is similar to the one in the proof of

Theorem 6.4.1. Let f = f1||f2||f̄1||f̄2. We see that

AI(f1||f2) = AI(f̄1||f̄2).

Additionally, by the definition of algebraic immunity, the annihilator used to justify

the AI of f1||f2 or f̄1||f̄2 can be the same function. Let g = g1||g2 6= 0 be a nonzero

annihilator of f where g1, g2 ∈ Bn−1. The degree of the concatenation g = g1||g2 is

deg(g) = max{deg(g1), deg(g1 ⊕ g2)⊕ 1}.

We observe that this value takes a minimum when g1 = g2. So we have

min{deg(g)} = min{max{deg(g1), deg(g1 ⊕ g2)⊕ 1}}

= deg(g1)

=

⌊
n− 1

3

⌋
+ 1

=

⌊
n+ 2

3

⌋
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by Equation 6.3, which gives us AI(f) ≥
⌊
n+2

3

⌋
.

We see that Theorems 5.4.6 and 5.4.7 apply to the normality of the Construction 1

and 2 functions, respectively.

Example 6.4.3. We present a snapshot of a performance comparison between the base

function HWBF and a function of Construction 1. Let f = f1 ‖ f2 ‖ f1 ‖ f̄2. In Table 6.4,

one can find the algebraic immunity and nonlinearity of f , compared to the HWBF hn.

n AI(f) AI(h) nl(f) nl(hn)
7 3 3 52 44
8 4 4 104 88
9 4 4 216 186
10 5 4 432 372
11 5 5 884 772
12 5 5 1768 1544
13 6 5 3592 3172
14 6 5 7184 6344
15 6 6 14536 12952

Table 6.4: Algebraic immunity and nonlinearity of the HWBF-based f and the HWBF h
From [27]

As for the algebraic immunity, let fg = hn, deg(g) = d and deg(hn) = e. In Table

6.5, we present the lowest possible values of (d, e) needed for the fast algebraic attack.

n 7 8 9 10 11 12 13
(d, e) (1,3) (1,5) (1,5) (1,7) (1,7) (1,9) (1,9)

(2,4) (2,4) (2,4) (2,5) (2,6) (2,8) (2,8)
(3,3) (3,4) (3,4) (3,5) (3,5) (3,6) (3,6)

(4,5) (4,5) (4,6) (4,6)
(5,6)

Table 6.5: Behavior of the HWBF-based function f against Fast Algebraic Attacks From
[27]

Remark 6.4.4. We briefly mention some tentative results on our constructions with the

Carlet–Feng function. Let f1 ∈ B10 be the Carlet–Feng function with the primitive poly-

141



nomial

x10 + x6 + x5 + x3 + x2 + x+ 1

and f2(x) = f1(Ax), where

A = (e1, e2, e3, e4, e5, e10, e6, e7, e8, e9)

and ei ∈ F10
2 is the unit column vector with 1 on the i-th position and 0’s elsewhere.

Let f = f1||f2||f1||f̄2 ∈ B12. Then, we computed AI(f) = 6 and nl(f) = 1992. In

comparison, the nonlinearity of the 12-variable Carlet-Feng function discussed in [96] and

[97] is only 1970. Also, the recent 12-variable functions constructed by Construction 1

and 2 of [96] have the nonlinearity at most 1988 and 1982, respectively. Our constructions

compare well to competitive constructions with good cryptographic properties.
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7. CONCLUSION AND FUTURE RESEARCH

7.1. CONCLUSION

In this dissertation, we studied the affine equivalence of Boolean functions, the

relationship between Boolean functions and graphs, and the construction techniques of

Boolean functions and their applications. Affine equivalence of Boolean functions still re-

mains a tough challenge for researchers. We defined S-equivalence, a special type of affine

equivalence based on permutation of variables, and our research focused on S-equivalence

of MRS functions and circulant matrices of F2. We established a relationship between

MRS functions and the circulant matrices of F2. We explored the group structure of the

circulant matrices of F2 and found a pattern of the square of a circulant matrix of F2. This

pattern ultimately helped us to a series of properties of MRS functions of which circu-

lant matrices are singular, but have pseudo inverses. We showed a condition in terms of

generating polynomials for a singular circulant matrix in F2 to have a general or reflexive

inverse. We defined a dual function for an MRS function with respect to the inverse of the

circulant matrix of the function. We then showed that two S-equivalent functions have the

same degree in ANF, and their dual functions have the same degree. We also showed that

if two MRS functions of which circulant matrices are P-Q equivalent, they have the same

degree. Moreover, if the matrices are invertible, their dual functions have the same degree,

and a circulant matrix of one of the original functions is a permutation of the other.

We developed an idea to represent an MRS function in a graph using the cycles

generated by the ordered short algebraic normal form (OSANF) of the function. We illus-

trated that this graph is regular. We showed that the graph is ultimately determined by the

sequential differences of the indices of variables in OSANF. We described the relationship

between this property and the construction of MRS functions.

We considered two effective constructions of cryptographic Boolean functions, which

use a base function with strong cryptographic properties, one of its affine equivalent func-
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tions, and simple construction techniques, namely complementation and concatenation.

This strategy reinforces the two important requirements for cryptographic functions, namely

security and speed. Security is clearly a must requirement. However, if a cryptographic

function requires an unreasonable amount of computing power or hard-to-implement hard-

ware or software, it cannot be utilized effectively. We presented an application of the

constructions, using hidden weighted-bit functions.

In summary, we cleared some trenches on the way to a complete understanding of

the affine-equivalence problem of Boolean functions. We further presented two effective

constructions for cryptographic Boolean functions.

7.2. FUTURE WORK

In this dissertation, we explored various areas of Boolean functions. We solved

some related problems in the process, but we could not solve all the problems. We present

a partial list of problems worth considering.

1. Prove or disprove “If f s∼ g with singular matrices Af and Ag, and wt(∆(f)) =

wt(∆(g)), then wt(∆(f †)) = wt(∆(g†)), where f † and g† are pseudoinverses of f

and g, respectively”.

2. We propose a thorough analysis of the CCGs. More graph-theoretic, number-theoretic,

and combinatorial analyses can be done. One can also study the relationship between

the CCG and cryptographic properties. One can expand the concept of CCG and de-

velop a CCG-like structure for all RSBFs.

3. Extend the cryptographic analysis of Constructions 1 and 2 to GAC,..., etc. Study

more applications of the constructions using other functions.

4. The BDD of Boolean functions has an interesting set of operations. Their effects

on various cryptographic properties of Boolean functions would be a worthwhile

project.
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5. HWBFs seem to display predictable patterns in the second half of a truth table. An

interesting project will be to engineer another class of cryptographic Boolean func-

tions with high BBD size, but without the predictability.
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